Câu hỏi:

02/08/2025 12 Lưu

Bảng dưới đây biểu diễn mẫu số liệu ghép nhóm về chiểu cao của 42 mẫu cây ờ một vườn thực vật (đơn vị: centimét). Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm đó (làm tròn kết quả đến hàng phẩn mười nếu cần).
Media VietJack
a) Khoảng biến thiên của mỗi mẫu số liệu là: 42.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn Sai

Câu hỏi cùng đoạn

Câu 2:

b) Tứ phân vị thứ nhất của mỗi mẫu số liệu là: 38

Xem lời giải

verified Lời giải của GV VietJack

Chọn sai

Câu 3:

c) Tứ phân vị thứ ba của mỗi mẫu số liệu: 60,04

Xem lời giải

verified Lời giải của GV VietJack

Khoảng biến thiên: R = 70 – 40 = 30

Cỡ mẫu là \(n = 42\).

Ta có: \(\frac{n}{4} = \frac{{42}}{4} = 10,5\) mà \(5 < 10,5 < 15\). Suy ra nhóm 2 là nhóm đẩu tiên có tẩn số tích lũy lớn hơn hoặc bằng 10,5 .

Tứ phân vị thứ nhất: \({Q_1} = 45 + \left( {\frac{{10,5 - 5}}{{10}}} \right) \cdot 5 = 47,75(\;{\rm{cm}}).\)

Tứ phân vị thứ ba là: \({Q_3} = 60 + \left( {\frac{{31,5 - 31}}{7}} \right).5 \approx 60,4(\;{\rm{cm}}).\)

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là: \({\Delta _Q} = {Q_3} - {Q_1} \approx 60,4 - 47,75 = 12,65(\;{\rm{cm}}).\)

Chọn đúng

Câu 4:

d) Tứ phân vị thứ nhất của mỗi mẫu số liệu là: 12,65

Xem lời giải

verified Lời giải của GV VietJack

Khoảng biến thiên: R = 70 – 40 = 30

Cỡ mẫu là \(n = 42\).

Ta có: \(\frac{n}{4} = \frac{{42}}{4} = 10,5\) mà \(5 < 10,5 < 15\). Suy ra nhóm 2 là nhóm đẩu tiên có tẩn số tích lũy lớn hơn hoặc bằng 10,5 .

Tứ phân vị thứ nhất: \({Q_1} = 45 + \left( {\frac{{10,5 - 5}}{{10}}} \right) \cdot 5 = 47,75(\;{\rm{cm}}).\)

Tứ phân vị thứ ba là: \({Q_3} = 60 + \left( {\frac{{31,5 - 31}}{7}} \right).5 \approx 60,4(\;{\rm{cm}}).\)

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là: \({\Delta _Q} = {Q_3} - {Q_1} \approx 60,4 - 47,75 = 12,65(\;{\rm{cm}}).\)

Chọn đúng

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Số trung bình cộng của mẫu số liệu ghép nhóm trên là

\(\overline x  = \frac{{5.45 + 8.55 + 25.65 + 20.75 + 2.85}}{{60}} = 66\) (nghìn đồng)

Chọn Sai.

Lời giải

Khoảng biến thiên là \(R = 100 - 50 = 50\)

Kích thước của mẫu số liệu là \(N = 100\). Ta có \(\frac{N}{4} = 25;\frac{N}{2} = 50;\frac{{3N}}{4} = 75\).

- Đối với mẫu số liệu về điểm của lớp \(A\), ta tìm các tứ phân vị \(Q_1^A,Q_2^A,Q_3^A\) và khoảng tứ phân vị \(\Delta _Q^A\) qua bảng tần số tích luỹ dưới đây:

(Đúng hay sai) Khoảng biến thiên của mỗi mẫu số liệu là 50. (ảnh 1)

Nhóm chứa \(Q_1^A\) là \([60;70)\). \(Q_1^A = 60 + \frac{{25 - 8}}{{20}} \cdot 10 = 68,5\).

Nhóm chứa \(Q_2^A\) là [70 ; 80).\(Q_2^A = 70 + \frac{{50 - 28}}{{50}} \cdot 10 = 74,4\).

Nhóm chứa \(Q_3^A\) là [70 ; 80).\(Q_3^A = 70 + \frac{{75 - 28}}{{50}} \cdot 10 = 79,4\).

Vậy \(\Delta _Q^A = 79,4 - 68,5 = 10,9\).

Chọn đúng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP