Câu hỏi:
11/07/2024 29,911Cho G là trọng tâm của tam giác đều ABC. Chứng minh rằng:
GA = GB = GC
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi trung điểm BC, CA, AB lần lượt là M, N, P.
Khi đó AM, BN, CP đồng quy tại trọng tâm G.
Ta có: ∆ABC đều suy ra:
+ ∆ABC cân tại A ⇒ BN = CP (theo chứng minh bài 26).
+ ∆ABC cân tại B ⇒ AM = CP (theo chứng minh bài 26).
⇒ AM = BN = CP (1)
Vì G là trọng tâm của ∆ABC nên theo tính chất đường trung tuyến:
Từ (1) , (2) ⇒ GA = GB = GC.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hãy chứng minh định lí đảo của định lí trên: Nếu tam giác có hai đường trung tuyến bằng nhau thì tam giác đó cân.
Câu 2:
Chứng minh định lí: Trong một tam giác cân, hai đường trung tuyến ứng với hai cạnh bên thì bằng nhau.
Câu 3:
Gọi G là trọng tâm của tam giác ABC. Trên tia AG lấy điểm G' sao cho G là trung điểm của AG'
So sánh các đường trung tuyến của tam giác BGG' với các cạnh của tam giác ABC.
Câu 4:
Gọi G là trọng tâm của tam giác ABC. Trên tia AG lấy điểm G' sao cho G là trung điểm của AG'.
So sánh các cạnh của tam giác BGG' với các đường trung tuyến của tam giác ABC.
Câu 5:
Cho tam giác DEF cân tại D với đường trung tuyến DI.
Biết DE = DF = 13cm, EF = 10cm, hãy tính độ dài đường trung tuyến DI.
Câu 6:
Cho tam giác DEF cân tại D với đường trung tuyến DI.
Chứng minh ΔDEI = ΔDFI.
về câu hỏi!