Câu hỏi:

11/07/2024 7,082

Gọi G là trọng tâm của tam giác ABC. Trên tia AG lấy điểm G' sao cho G là trung điểm của AG'.

So sánh các cạnh của tam giác BGG' với các đường trung tuyến của tam giác ABC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải bài 30 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

Gọi trung điểm BC, CA, AB lần lượt là M, N, P.

⇒ AM, BN, CP là các đường trung tuyến, G là trọng tâm của ΔABC

Theo tính chất đường trung tuyến của tam giác ta có:

GB = 2/3.BN (1)

GA = 2/3.AM, mà GA = GG’ (do G là trung điểm của AG’) ⇒ GG’ = 2/3.AM (2)

GM=1/2.AG, mà AG=GG’ ⇒ GM=1/2.GG’ ⇒ M là trung điểm của GG’ hay GM = G'M .

Xét ΔGMC và ΔG’MB có:

      GM = G’M (chứng minh trên)

      Giải bài 30 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

      MC = MB

⇒ ΔGMC = ΔG’MB (c.g.c)

⇒ GC = G’B (hai cạnh tương ứng).

Mà CG = 2/3.CP (tính chất đường trung tuyến) ⇒ G’B = 2/3.CP (3)

Từ (1), (2), (3) ta có : GG’ = 2/3.AM , GB = 2/3.BN, G’B = 2/3.CP.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải bài 29 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7Giải bài 29 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

Gọi trung điểm BC, CA, AB lần lượt là M, N, P.

Khi đó AM, BN, CP đồng quy tại trọng tâm G.

Ta có: ∆ABC đều suy ra:

+ ∆ABC cân tại A ⇒ BN = CP (theo chứng minh bài 26).

+ ∆ABC cân tại B ⇒ AM = CP (theo chứng minh bài 26).

⇒ AM = BN = CP (1)

Vì G là trọng tâm của ∆ABC nên theo tính chất đường trung tuyến:

Giải bài 29 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

Từ (1) , (2) ⇒ GA = GB = GC.

Lời giải

Giải bài 27 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

Giả sử ΔABC có hai đường trung tuyến BM và CN cắt nhau tại G.

⇒ G là trọng tâm của tam giác

Giải bài 27 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

QUẢNG CÁO

Mà BM = CN (theo gt) ⇒ GB = GC ⇒ GM = GN.

Xét ΔGNB và ΔGMC có :

GN = GM (cmt)

GB = GC (cmt)

Giải bài 27 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ ΔGNB = ΔGMC (c.g.c) ⇒ NB = MC.

Lại có AB = 2.BN, AC = 2.CM (do M, N là trung điểm AC, AB)

⇒ AB = AC ⇒ ΔABC cân tại A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP