Hai hạt mang điện (có kích thước nhỏ, bỏ qua lực hấp dẫn giữa chúng) đặt cách nhau một khoảng \(r\) trong không khí thì chúng hút nhau bằng một lực có độ lớn là \(F\). Nếu độ lớn điện tích của hạt thứ nhất tăng gấp đôi, độ lớn điện tích của hạt thứ hai tăng gấp ba và khoảng cách giữa hai hạt giảm xuống còn bằng r/4 thì độ lớn của lực hút giữa chúng lúc này bằng
Quảng cáo
Trả lời:

Phương pháp:
Sử dụng công thức của định luật Coulomb: \(F = k.\frac{{\left| {{q_1}{q_2}} \right|}}{{{r^2}}}\)
Cách giải:
Lực tương tác giữa hai điện tích ban đầu là: \({F_1} = k.\frac{{\left| {{q_1}{q_2}} \right|}}{{{r^2}}}\)
Sau khi độ lớn điện tích của hạt thứ nhất tăng gấp đôi, độ lớn điện tích của hạt thứ hai tăng gấp ba và khoảng cách giữa hai hạt giảm xuống còn bằng r/4 thì độ lớn của lực hút giữa chúng lúc này bằng:
\({F_2} = k.\frac{{\left| {2{q_1}.3{q_2}} \right|}}{{{{\left( {\frac{r}{4}} \right)}^2}}} = 96k.\frac{{\left| {{q_1}.{q_2}} \right|}}{{{r^2}}} \Rightarrow {F_2} = 96{F_1}\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- Sổ tay Vật lí 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Vật lí (có đáp án chi tiết) ( 38.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp:
+ Phân tích đồ thị kết hợp với nhớ lại khái niệm các đẳng quá trình.
+ Áp dụng biểu thức của các đẳng quá trình để tìm các thông số chưa biết.
+ Sử dụng công thức: \({\rm{\Delta }}U = \frac{3}{2}nR{\rm{\Delta }}T\)
Cách giải:
a) Từ đồ thị ta thấy quá trình \({\rm{A}}\left( {{\rm{I}} \to {\rm{II}}} \right)\): áp suất \(p = 400\left( {{\rm{N}}/{{\rm{m}}^2}} \right)\) không đổi
\( \to \) Quá trình A là quá trình đẳng áp.
\( \to \) a đúng.
b) Quá trình B gồm 2 quá trình:
+ \({\rm{I}} \to \) III: \({p_I}{V_I} = {p_{III}}{V_{II}} \to \) quá trình đẳng nhiệt
+ \({\rm{III}} \to {\rm{II}}:{V_{{\rm{III\;}}}} = {V_{II}} = 8{\rm{\;}}{{\rm{m}}^3} \to \) quá trình đẳng tích
\( \to \) b sai.
c) Biến thiên nội năng: \({\rm{\Delta }}U = \frac{3}{2}nR{\rm{\Delta }}T\) (chỉ phụ thuộc vào nhiệt độ).
Mà quá trình A và B có trạng thái đầu và cuối giống nhau nên sự biến thiên nội năng của hệ trong hai quá trình này bằng nhau.
\( \to \) c sai.
d) Trạng thái (I): \(\left\{ {\begin{array}{*{20}{l}}{{p_I} = 400\left( {{\rm{N}}/{{\rm{m}}^2}} \right)}\\{{V_I} = 2{\rm{\;}}{{\rm{m}}^3}}\\{{T_1} = T}\end{array}} \right.\)
Ta có: \(\frac{{{V_I}}}{{{T_I}}} = \frac{{{V_{II}}}}{{{T_{II}}}} \Leftrightarrow {T_{II}} = \frac{{{V_{II}}{T_I}}}{{{V_I}}} = \frac{{8.T}}{2} = 4T\)
Biến thiên nội năng của hệ trong quá trình \(B\) là:
\({\rm{\Delta }}U = \frac{3}{2}nR{\rm{\Delta }}T = \frac{3}{2}.nR\left( {{T_2} - {T_1}} \right) = \frac{3}{2}nR\left( {4T - T} \right) = \frac{9}{2}nRT\)
\( \Rightarrow {\rm{\Delta }}U = \frac{9}{2}{p_I}{V_I} = \frac{9}{2}.400.2 = 3600{\rm{\;J}}\)
Lời giải
Phương pháp:
a) Xác định áp suất trong xi lanh: \(p = {p_0} + p'\)
Sử dụng công thức tính áp suất: \(p = \frac{F}{S}\)
b) Sử dụng số liệu từ bảng
Xác định áp suất trong xi lanh khi đặt thêm N khối trụ lên pit tong: \(p = {p_0} + p' = {p_0} + \frac{{\left( {{\rm{Nm}}} \right){\rm{.g}}}}{{\rm{S}}}\)
Xây dựng bảng số liệu p tương ứng
Vẽ đồ thị thay đổi p theo \(1/{\rm{V}}\). Xác định hệ số góc.
Xác định số mol: \(n = \frac{{{\rm{tan}}\alpha }}{{RT}}\)
Cách giải:
a) Áp suất khí trong xi lanh:
\(p = {p_0} + p' = {p_0} + \frac{{mg}}{S}\)
\( \Rightarrow p = {1,01.10^5} + \frac{{0,2.9,8}}{{{{5.10}^{ - 4}}}} = {1,05.10^5}{\rm{\;Pa}}\)
b) Khi ta đặt thêm N khối trụ lên pit tong, áp suất khí khi đó:
\(p = {p_0} + p' = {p_0} + \frac{{\left( {{\rm{Nm}}} \right).{\rm{g}}}}{{\rm{S}}}\)
Thay tương ứng ta có bảng số liệu sau:
Số lượng khối trụ trên pittong |
Thể tích \(V\left( {{{\rm{m}}^3}} \right)\) |
Áp suất khí trong bình |
5 |
\({5,2.10^{ - 5}}\) |
\({1,21.10^5}\) |
10 |
\({4,5.10^{ - 5}}\) |
\({1,40.10^5}\) |
15 |
\({3,9.10^{ - 5}}\) |
\({1,50.10^5}\) |
20 |
\({3,5.10^{ - 5}}\) |
\({1,79.10^5}\) |
Ta có đồ thị thay đổi của p theo \(1/{\rm{V}}\):

Hệ số góc của đồ thị trên: \({\rm{tan}}\alpha = nRT = 6,3\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.