Câu hỏi:

28/08/2025 43 Lưu

Một chất điểm dao động điều hòa có đồ thị li độ như hình vẽ. Tìm phương trình dao động của vật?

Một chất điểm dao động điều hòa có đồ thị li độ như hình vẽ. Tìm phương trình dao động của vật? (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Biên độ dao động \(A = 4\,cm\,.\)

Một chất điểm dao động điều hòa có đồ thị li độ như hình vẽ. Tìm phương trình dao động của vật? (ảnh 2)

Vị trí\(x = 2\sqrt 2 \,cm\) trên đường tròn biên độ 4 cm \( \Rightarrow \alpha  = \frac{\pi }{2}\,rad\,.\)

Suy ra:\(\omega .\left( {\frac{{19}}{{24}} - \frac{{13}}{{24}}} \right) = \frac{\pi }{2} \Rightarrow \omega  = 2\pi \)rad/s.

Ban đầu có li độ âm và đồ thị giảm nên được biểu diễn bởi điểm M0 trên đường tròn.

Pha dao động tại N: \({\varphi _N} = \omega {t_N} + \varphi  = 2\pi  - \frac{\alpha }{2} \Rightarrow 2\pi .\frac{{13}}{{24}} + \varphi  = 2\pi  - \frac{\pi }{4} \Rightarrow \varphi  = \frac{{7\pi }}{4}\,rad\,.\)

Vậy phương trình dao động: \(x = 4\cos \left( {2\pi t + \frac{{7\pi }}{4}} \right)\,cm\,.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bài cho biết:

Ở thời điểm t1:\({x_1} = 4\,\left( {cm} \right),\,{v_1} = 30\pi \,\left( {cm/s} \right).\)

Ở thời điểm t2:\({x_2} = 3\,\left( {cm} \right),\,{v_2} = 40\pi \,\left( {cm/s} \right).\)

Liên hệ giữa x và v: \(\frac{{{x^2}}}{{{A^2}}} + \frac{{{v^2}}}{{{{\left( {\omega A} \right)}^2}}} = 1\,\,\,\,\,\,\,\,\,\left( 1 \right)\)

Thay các giá trị x và v ở hai thời điểm vào (1) ta có hệ phương trình:

\[\left\{ \begin{array}{l}\frac{{{4^2}}}{{{A^2}}} + \frac{{{{\left( {30\pi } \right)}^2}}}{{{{\left( {\omega A} \right)}^2}}} = 1\\\frac{{{3^2}}}{{{A^2}}} + \frac{{{{\left( {40\pi } \right)}^2}}}{{{{\left( {\omega A} \right)}^2}}} = 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\frac{1}{{{A^2}}} = \frac{1}{{25}}\\\frac{1}{{{{\left( {\omega A} \right)}^2}}} = \frac{1}{{2500{\pi ^2}}}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}A = 5\\\omega A = 50\pi \end{array} \right. \Rightarrow \left\{ \begin{array}{l}A = 5\\\omega  = 10\pi \end{array} \right. \Rightarrow \left\{ \begin{array}{l}A = 5\\f = 5\end{array} \right.\]

Lời giải

Đáp án đúng là D

Chu kì: \[T = 2\pi \sqrt {\frac{\ell }{g}}  \Rightarrow \ell  = 1\]m.

Cơ năng của con lắc: \[{\rm{W}} = \frac{1}{2}mg\ell \alpha _0^2 = \frac{1}{2}mg\ell {\left( {\frac{{{s_0}}}{\ell }} \right)^2} = \frac{1}{2}.0,2.10.1.{\left( {\frac{{0,05}}{1}} \right)^2} = {25.10^{ - 4}}\] J.

Câu 4

A. lặp lại vị trí 2 lần liên tiếp.                            

B. thực hiện một dao động toàn phần.

C. lặp lại vectơ vận tốc 2 lần liên tiếp.               

D. lặp lại vị trí và vectơ gia tốc 2 lần liên tiếp.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP