Một con lắc đơn gồm quả cầu có khối lượng 400 (g) và sợi dây treo không dãn có trọng lượng không đáng kể, chiều dài 0,1 (m) được treo thẳng đứng ở điểm A. Biết con lắc đơn dao động điều hoà, tại vị trí có li độ góc 0,075 (rad) thì có vận tốc 0,075\(\sqrt 3 \) (m/s). Cho gia tốc trọng trường 10 (m/s2). Tính cơ năng dao động.
Một con lắc đơn gồm quả cầu có khối lượng 400 (g) và sợi dây treo không dãn có trọng lượng không đáng kể, chiều dài 0,1 (m) được treo thẳng đứng ở điểm A. Biết con lắc đơn dao động điều hoà, tại vị trí có li độ góc 0,075 (rad) thì có vận tốc 0,075\(\sqrt 3 \) (m/s). Cho gia tốc trọng trường 10 (m/s2). Tính cơ năng dao động.
A. 4,7 mJ.
B. 4,4 mJ.
C. 4,5 mJ.
Quảng cáo
Trả lời:

Đáp án đúng là C
\[{\rm{W}} = \frac{{mg\ell }}{2}{\alpha ^2} + \frac{{m{v^2}}}{2} = \frac{{0,4.10.0,1}}{2}{.0,075^2} + 0,4.\frac{{{{\left( {0,075\sqrt 3 } \right)}^2}}}{2} = {4,5.10^{ - 3}}\left( J \right)\]
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(x = 20c{\rm{os}}(\pi t + \frac{\pi }{2}){\rm{ (cm)}}\).
B. \(x = 10c{\rm{os}}(\pi t + \frac{\pi }{4}){\rm{ (cm)}}\).
C. \(x = - 20c{\rm{os}}(\pi t - \frac{\pi }{2}){\rm{ (cm)}}\).
Lời giải
Đáp án đúng là A
Gọi phương trình dao động của vật có dạng: \(x = Ac{\rm{os}}(\omega t + \varphi )\)
Khi đó phương trình vận tốc và gia tốc có biểu thức lần lượt là:
\(v = - A\omega \sin (\omega t + \varphi )\)
\(a = - A{\omega ^2}c{\rm{os}}(\omega t + \varphi )\)
Từ đồ thị, ta có:
+ Theo trục hoành ta có thời gian để có một hình sin là 2(s) \( \Rightarrow \) Chu kì của dao động:
\(T = 2s \Rightarrow \omega = \frac{{2\pi }}{T} = \frac{{2\pi }}{2}\pi {\rm{ (rad/s)}}\)
+ Theo trục tung ta có gia tốc đạt giá trị lớn nhất là \(2{\rm{ m/}}{{\rm{s}}^2}\):
\({a_{ma{\rm{x}}}} = A{\omega ^2} \Rightarrow A = \frac{{{a_{ma{\rm{x}}}}}}{{{\omega ^2}}} = \frac{{200}}{{{\pi ^2}}} = 20cm\)
+ Khi t = 0 thì a = 0 và gia tốc đang tăng \( \Rightarrow \)li độ x = 0 và đang đi theo chiều âm (vì x và a ngược pha) \( \Rightarrow \) Pha ban đầu của x là: \(\varphi = \frac{\pi }{2}\)(rad)
Vậy phương trình dao động của vật là: \(x = 20c{\rm{os}}(\pi t + \frac{\pi }{2}){\rm{ (cm)}}\)
Câu 2
A. 8 N/m.
B. 80 N/m.
C. 16 N/m.
Lời giải
Đáp án đúng là C
Ta có: \[f = \frac{1}{{2\pi }}\sqrt {\frac{k}{m}} \Rightarrow k = {(2\pi f\sqrt m )^2}\]\[ = 4{\pi ^2}{f^2}m = {4.10.2^2}.0,1 = 16(N/m)\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. 6 cm.
B. 4,5 cm.
C. 4 cm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.