Câu hỏi:

28/08/2025 23 Lưu

Khi nói về lực kéo về trong dao động điều hòa, nhận xét nào dưới đây đúng, nhận xét nào sai?

a) Ngược pha với gia tốc dao động.

b) Công sinh ra trong một chu kỳ bằng không.

c) Cùng pha với vận tốc dao động.

d) Vuông pha với li độ dao động.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

+ Lực kéo về:

\(F =  - k.x \Rightarrow \) lực kéo về biến thiên điều hòa cùng tần số và ngược pha với li độ

\(F = m.a \Rightarrow \) lực kéo về biến thiên điều hòa cùng tần số và cùng pha với gia tốc

+ Trong dao động điều hòa, lực kéo về sinh công dương khi đi về VTCB và sinh công âm khi rời xa vị trí cân bằng, công do lực kéo về sinh ra trong một chu kỳ luôn bằng không.

Đáp án: a) Sai; b) Đúng; c) Sai; d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A.  \(x = 20c{\rm{os}}(\pi t + \frac{\pi }{2}){\rm{ (cm)}}\).

B. \(x = 10c{\rm{os}}(\pi t + \frac{\pi }{4}){\rm{ (cm)}}\).

C. \(x =  - 20c{\rm{os}}(\pi t - \frac{\pi }{2}){\rm{ (cm)}}\).

D. \(x =  - 10c{\rm{os}}(\pi t + \frac{\pi }{3}){\rm{ (cm)}}\).

Lời giải

Đáp án đúng là A

Gọi phương trình dao động của vật có dạng: \(x = Ac{\rm{os}}(\omega t + \varphi )\)

Khi đó phương trình vận tốc và gia tốc có biểu thức lần lượt là:

\(v =  - A\omega \sin (\omega t + \varphi )\)

\(a =  - A{\omega ^2}c{\rm{os}}(\omega t + \varphi )\)

Từ đồ thị, ta có:

+ Theo trục hoành ta có thời gian để có một hình sin là 2(s) \( \Rightarrow \) Chu kì của dao động:

\(T = 2s \Rightarrow \omega  = \frac{{2\pi }}{T} = \frac{{2\pi }}{2}\pi {\rm{ (rad/s)}}\)

+ Theo trục tung ta có gia tốc đạt giá trị lớn nhất là \(2{\rm{ m/}}{{\rm{s}}^2}\):

 \({a_{ma{\rm{x}}}} = A{\omega ^2} \Rightarrow A = \frac{{{a_{ma{\rm{x}}}}}}{{{\omega ^2}}} = \frac{{200}}{{{\pi ^2}}} = 20cm\)

+ Khi t = 0 thì a = 0 và gia tốc đang tăng \( \Rightarrow \)li độ x = 0 và đang đi theo chiều âm (vì x và a ngược pha) \( \Rightarrow \) Pha ban đầu của x là: \(\varphi  = \frac{\pi }{2}\)(rad)

Vậy phương trình dao động của vật là: \(x = 20c{\rm{os}}(\pi t + \frac{\pi }{2}){\rm{ (cm)}}\)

Lời giải

Đáp án đúng là C

Ta có: \[f = \frac{1}{{2\pi }}\sqrt {\frac{k}{m}}  \Rightarrow k = {(2\pi f\sqrt m )^2}\]\[ = 4{\pi ^2}{f^2}m = {4.10.2^2}.0,1 = 16(N/m)\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP