CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là C

Ta có: \[{A^2} = x_1^2 + \frac{{v_1^2}}{{{\omega ^2}}} = x_2^2 + \frac{{v_2^2}}{{{\omega ^2}}} \to \omega  = \sqrt {\frac{{v_1^2 - v_2^2}}{{x_2^2 - x_1^2}}}  = \sqrt {\frac{{{{20}^2} - {{\left( {20\sqrt 3 } \right)}^2}}}{{{{\left( {8\sqrt 2 } \right)}^2} - {{\left( {8\sqrt 3 } \right)}^2}}}}  = 2,5\left( {rad/s} \right)\]

\[A = \sqrt {x_1^2 + \frac{{v_1^2}}{{{\omega ^2}}}}  = 16cm \to {v_{\max }} = A\omega  = 40\left( {cm/s} \right)\]

Lời giải

Ta có: \[v = \frac{{{v_{\max }}}}{2} = \frac{{A\omega }}{2}\]            

Động năng: \[{W_d} = \frac{1}{2}m{v^2} = \frac{1}{2}m{\left( {\frac{{A\omega }}{2}} \right)^2} = \frac{1}{8}m{\omega ^2}{A^2} = \frac{1}{8}k{A^2}\]

Thế năng: \[{W_t} = W - {W_d} = \frac{1}{2}k{A^2} - \frac{1}{8}k{A^2} = \frac{3}{8}k{A^2}\]

Từ đó: \[\frac{{{W_t}}}{{{W_d}}} = 3\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[0 < t < \frac{1}{3}s\].

B. \[\frac{{11}}{6}s < t < \frac{7}{3}s\].       

C. \[\frac{1}{4}s < t < \frac{3}{4}s\].           

D. \[0 < t < \frac{1}{2}s\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. tần số dao động.

B. biên độ dao động.

C. bình phương tần số dao động.

D. bình phương chu kỳ dao động.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 0,50 s.                   

B. 1,50 s.                    

C. 0,25 s.                    

D. 1,00 s.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP