Câu hỏi:

04/09/2025 9 Lưu

Một con lắc lò xo treo thẳng đứng tại nơi \[g = 10m/{s^2}\]. Vật đang cân bằng thì lò xo giãn 5 cm. Kéo vật xuống dưới vị trí cân bằng 1 cm rồi truyền cho nó một vận tốc ban đầu \[{v_0}\] hướng thẳng lên thì vật dao động điều hòa với vận tốc cực đại \[30\sqrt 2 cm/s\]. Vận tốc \[{v_0}\] có độ lớn là bao nhiêu? (Đơn vị: cm/s).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \[\omega  = \sqrt {\frac{g}{{\Delta l}}}  = \sqrt {\frac{{10}}{{0,05}}}  = 10\sqrt 2 \left( {rad/s} \right)\]

           \[A = \frac{{{v_{\max }}}}{\omega } = \frac{{30\sqrt 2 }}{{10\sqrt 2 }} = 3\left( {cm} \right)\]

Từ đó: \[{v_0} =  \pm \omega \sqrt {{A^2} - {x^2}}  =  \pm 10\sqrt 2 \sqrt {{3^2} - {1^2}}  = 40\left( {cm/s} \right)\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \[v = \frac{{{v_{\max }}}}{2} = \frac{{A\omega }}{2}\]            

Động năng: \[{W_d} = \frac{1}{2}m{v^2} = \frac{1}{2}m{\left( {\frac{{A\omega }}{2}} \right)^2} = \frac{1}{8}m{\omega ^2}{A^2} = \frac{1}{8}k{A^2}\]

Thế năng: \[{W_t} = W - {W_d} = \frac{1}{2}k{A^2} - \frac{1}{8}k{A^2} = \frac{3}{8}k{A^2}\]

Từ đó: \[\frac{{{W_t}}}{{{W_d}}} = 3\].

Câu 2

Lời giải

Đáp án đúng là C

Ta có: \[W = \frac{1}{2}m{\omega ^2}{A^2} = \frac{1}{2}m{\left( {2\pi f} \right)^2}{A^2} = 2{\pi ^2}m{f^2}{A^2}.\]

Do đó cơ năng của vật dao động điều hòa tỉ lệ thuận với bình phương tần số dao động.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP