Câu hỏi:

04/09/2025 9 Lưu

Tại một nơi trên mặt đất, một con lắc đơn dao động điều hòa. Trong khoảng thời gian \[\Delta t\], con lắc thực hiện 60 dao động toàn phần; thay đổi chiều dài con lắc một đoạn 44 cm thì cũng trong khoảng thời gian \[\Delta t\] ấy, nó thực hiện 50 dao động toàn phần. Chiều dài ban đầu của con lắc là bao nhiêu? (Đơn vị: cm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chu kỳ của con lắc đơn có chiều dài \[\ell \] là: \[T = 2\pi \sqrt {\frac{\ell }{g}}  = \frac{{\Delta t}}{{60}}\]

Chu kỳ của con lắc đơn có chiều dài \[\ell  + \Delta \ell \] là: \[{T^'} = 2\pi \sqrt {\frac{{\ell  + 0,44}}{g}}  = \frac{{\Delta t}}{{50}}\]

Từ đó: \[\frac{{{T^'}}}{T} = \sqrt {\frac{{\ell  + 0,44}}{\ell }}  = \frac{{60}}{{50}} = 1,2 \to \ell  = 1\,m = 100\left( {cm} \right)\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \[v = \frac{{{v_{\max }}}}{2} = \frac{{A\omega }}{2}\]            

Động năng: \[{W_d} = \frac{1}{2}m{v^2} = \frac{1}{2}m{\left( {\frac{{A\omega }}{2}} \right)^2} = \frac{1}{8}m{\omega ^2}{A^2} = \frac{1}{8}k{A^2}\]

Thế năng: \[{W_t} = W - {W_d} = \frac{1}{2}k{A^2} - \frac{1}{8}k{A^2} = \frac{3}{8}k{A^2}\]

Từ đó: \[\frac{{{W_t}}}{{{W_d}}} = 3\].

Câu 2

Lời giải

Đáp án đúng là C

Ta có: \[W = \frac{1}{2}m{\omega ^2}{A^2} = \frac{1}{2}m{\left( {2\pi f} \right)^2}{A^2} = 2{\pi ^2}m{f^2}{A^2}.\]

Do đó cơ năng của vật dao động điều hòa tỉ lệ thuận với bình phương tần số dao động.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP