Câu hỏi:

10/09/2025 47 Lưu

Cho hình bình hành \(ABCD.\) Gọi \(H,\;K\) lần lượt là hình chiếu vuông góc của \(A,\;C\) trên \(BD.\)

          a) \(\widehat {ADB} = \widehat {DBC}.\)

          b) \(\Delta DHA = \Delta BKC.\)

          c) Tứ giác \(AKCH\) là hình bình hành.

          d) \(\widehat {KAB} > \widehat {HCD}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

mmmmm (ảnh 1)

a) Đúng.

tứ giác \(ABCD\) là hình bình hành nên \(AB = CD,\;AD = BC,\;AD\;{\rm{//}}\;BC.\)

\(AD\;{\rm{//}}\;BC\) nên \(\widehat {ADB} = \widehat {DBC}\) (hai góc so le trong).

b) Đúng.

\(H,\;K\) lần lượt là hình chiếu vuông góc của \(A,\;C\) trên \(BD\) nên \(AH \bot BD,\;CK \bot BD.\)

Do đó, \(\widehat {DHA} = \widehat {BKC} = 90^\circ .\)

Tam giác \(DHA\) và tam giác \(BKC\) có: \(\widehat {DHA} = \widehat {BKC} = 90^\circ ,\;DA = BC\;\left( {cmt} \right),\;\widehat {ADB} = \widehat {DBC}\;\left( {cmt} \right).\)

Do đó, \(\Delta DHA = \Delta BKC\;\left( {ch - gn} \right).\)

c) Đúng.

\(\Delta DHA = \Delta BKC\;\left( {cmt} \right)\) nên \(AH = KC.\)

Tứ giác \(AKCH\) có: \(AH = KC,\;AH\;{\rm{//}}\;KC\) (cùng vuông góc với \(BD\)) nên tứ giác \(AKCH\) là hình bình hành.

d) Sai.

tứ giác \(ABCD\) là hình bình hành nên \(\widehat {DAB} = \widehat {DCB}.\)

\(\Delta DHA = \Delta BKC\;\left( {cmt} \right)\) nên \(\widehat {DAH} = \widehat {KCB}\) (hai góc tương ứng).

tứ giác \(AKCH\) là hình bình hành nên \(\widehat {HAK} = \widehat {HCK}.\)

Do đó, \(\widehat {DAB} - \widehat {DAH} - \widehat {HAK} = \widehat {DCB} - \widehat {KCB} - \widehat {HCK},\) suy ra \(\widehat {KAB} = \widehat {HCD}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\widehat {BCD} = 60^\circ .\)                  
B. \(\widehat {BCD} = 65^\circ .\)             
C. \(\widehat {BCD} = 70^\circ .\)      
D. \(\widehat {BCD} = 75^\circ .\)

Lời giải

Đáp án đúng là: C

vvvvv (ảnh 1)

Vì tứ giác \(ABCD\) là hình bình hành nên \(\widehat {BCD} = \widehat {BAD} = 70^\circ .\) Vậy \(\widehat {BCD} = 70^\circ .\)

Lời giải

vvvvvv (ảnh 1)

a) Đúng.

Tứ giác \(ABCD\) có: \(AB\,{\rm{//}}\,CD,\;AB = CD\) nên tứ giác \(ABCD\) là hình bình hành.

b) Sai.

tứ giác \(ABCD\) là hình bình hành nên \(AD\,{\rm{//}}\,BC.\)

Kẻ \(Bk\) là tia đối của tia \(BA.\) Ta có: \(\widehat {ABC} + \widehat {CBk} = 180^\circ \) (hai góc kề bù).

\(AD\,{\rm{//}}\,BC\) nên \(\widehat A = \widehat {CBk}\) (hai góc đồng vị). Do đó, \(\widehat {ABC} + \widehat A = 180^\circ .\)

c) Sai.

Theo giả thiết: \(\widehat A - \widehat {ABC} = 50^\circ \) nên \(\widehat {ABC} = \widehat A - 50^\circ .\)

Theo phần b ta có: \(\widehat {ABC} + \widehat A = 180^\circ \) nên \(\widehat A - 50^\circ + \widehat A = 180^\circ .\) Suy ra \(\widehat A = 115^\circ .\)

tứ giác \(ABCD\) là hình bình hành nên \(\widehat C = \widehat A = 115^\circ .\) Vậy \(\widehat C = 115^\circ .\)

d) Sai.

Ta có: \(\widehat {ABC} = \widehat A - 50^\circ = 115^\circ - 50^\circ = 65^\circ .\)

tứ giác \(ABCD\) là hình bình hành nên \(\widehat D = \widehat B = 65^\circ .\) Vậy \(\widehat D = 65^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Hai đường chéo vuông góc với nhau.                     
B. Hai đường chéo cắt nhau tại trung điểm mỗi đường.                                              
C. Hai đường chéo bằng nhau.                                                 
D. Hai đường chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP