Cho tứ giác \(ABCD\) có \(AB = CD,\;AB\;{\rm{//}}\;CD,\;AB = 2AD.\) Gọi \(E,\;F\) lần lượt là trung điểm của \(AB,\;DC.\)
a) Tứ giác \(ABCD\) là hình thoi.
b) \(AE = AD.\)
c) Tứ giác \(AEFD\) là hình thoi.
d) Điều kiện để tứ giác \(AEFD\) là hình vuông là \(\widehat B = 90^\circ .\)
Cho tứ giác \(ABCD\) có \(AB = CD,\;AB\;{\rm{//}}\;CD,\;AB = 2AD.\) Gọi \(E,\;F\) lần lượt là trung điểm của \(AB,\;DC.\)
a) Tứ giác \(ABCD\) là hình thoi.
b) \(AE = AD.\)
c) Tứ giác \(AEFD\) là hình thoi.
d) Điều kiện để tứ giác \(AEFD\) là hình vuông là \(\widehat B = 90^\circ .\)
Quảng cáo
Trả lời:

a) Sai.
Tứ giác \(ABCD\) có: \(AB = CD,\;AB\;{\rm{//}}\;CD.\) Do đó, tứ giác \(ABCD\) là hình bình hành.
b) Đúng.
Vì \(E\) là trung điểm của \(AB\) nên \(AB = 2AE.\) Mà \(AB = 2AD\;\left( {gt} \right)\) nên \(AE = AD.\)
c) Đúng.
Vì \(F\) là trung điểm của \(CD\) nên \(CD = 2DF.\) Mà \(AB = CD\;\left( {gt} \right),\;AB = 2AE\;\left( {cmt} \right)\) nên \(AE = DF.\)
Tứ giác \(AEFD\) có: \(AE = DF,\;AE\;{\rm{//}}\;DF\) nên tứ giác \(AEFD\) là hình bình hành.
Mà \(AE = AD\;\left( {cmt} \right)\) nên tứ giác \(AEFD\) là hình thoi.
d) Đúng.
Vì tứ giác \(ABCD\) là hình bình hành nên \(\widehat D = \widehat B.\)
Để hình thoi \(AEFD\) là hình vuông thì \(\widehat D = 90^\circ .\) Khi đó, \(\widehat B = \widehat D = 90^\circ .\)
Vậy điều kiện để tứ giác \(AEFD\) là hình vuông là \(\widehat B = 90^\circ .\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Đúng.
Vì tam giác \(ABO\) vuông tại \(O\) nên \(AO \bot BO\) tại \(O\) hay \(AC \bot BD\) tại \(O.\)
Vì \(C\) đối xứng với điểm \(A\) qua \(O\) nên \(O\) là trung điểm của \(AC.\)
Tứ giác \(ABCD\) có: \(O\) là giao điểm của \(AC,\;BD.\) Mà \(O\) vừa là trung điểm của \(BD\) vừa là trung điểm của \(AC\) nên tứ giác \(ABCD\) là hình bình hành.
Lại có: \(AC \bot BD\) tại \(O\) nên tứ giác \(ABCD\) là hình thoi.
b) Sai.
Vì chu vi hình thoi \(ABCD\) bằng \[40\;{\rm{cm}}\] nên \(4AB = 40\) suy ra \(AB = 10\;{\rm{cm}}.\) Vậy \(AB = 10\;{\rm{cm}}.\)
c) Sai.
Vì tứ giác \(ABCD\) là hình thoi nên \(AB = BC.\) Do đó tam giác \(ABC\) cân tại \(B.\)
Do đó, \(\widehat {ACB} = \widehat {CAB}.\)
Vì tứ giác \(ABCD\) là hình thoi nên \(AC\) là tia phân giác của \(\widehat {DAB}.\) Do đó, \(\widehat {DAB} = 2\widehat {CAB}.\)
Vậy \(\widehat {DAB} = 2\widehat {ACB}.\)
d) Đúng.
Nếu \(\widehat {DAB} = 120^\circ \) thì:
Vì tứ giác \(ABCD\) là hình thoi nên \(\widehat {BAD} = \widehat {DCB} = 120^\circ ,\;\widehat {ADC} = \widehat {ABC}.\)
Lại có: \(\widehat {BAD} + \widehat {DCB} + \widehat {ADC} + \widehat {ABC} = 360^\circ \)
\(120^\circ + 120^\circ + \widehat {ABC} + \widehat {ABC} = 360^\circ \)
\(2\widehat {ABC} = 120^\circ \)
\(\widehat {ABC} = 60^\circ .\)
Tam giác \(ABC\) cân tại \(B\) có \(\widehat {ABC} = 60^\circ \) nên tam giác \(ABC\) đều.
Vậy điều kiện để tam giác \(ABC\) đều là \(\widehat {DAB} = 120^\circ .\)
Lời giải
Đáp án: \(6\)

Vì tứ giác \(ABCD\) là hình chữ nhật nên \(\widehat {ABM} = \widehat {BAN} = \widehat C = 90^\circ ,\;AB = CD.\)
Vì \(M\) là trung điểm của \(BC\) nên \(BM = MC.\)
Tam giác \(ABM\) và tam giác \(DCM\) có: \(\widehat {ABM} = \widehat C = 90^\circ ,\;AB = CD,\;BM = MC.\)
Do đó, \(\Delta ABM = \Delta DCM\left( {c - g - c} \right)\) nên \(AM = DM.\)
Suy ra, \(\Delta ADM\) cân tại \(M.\) Do đó, \(MN\) là đường trung tuyến đồng thời là đường cao của \(\Delta ADM.\)
Do đó, \(\widehat {ANM} = 90^\circ .\)
Tứ giác \(ANMB\) có: \(\widehat {ABM} = \widehat {BAN} = \widehat {ANM} = 90^\circ \) nên tứ giác \(ANMB\) là hình chữ nhật \(\left( 1 \right).\)
Suy ra: \(\widehat {BMN} = 90^\circ \;\left( 2 \right).\)
Vì \(AM \bot MD\) nên \(\widehat {AMD} = 90^\circ .\)
Vì \(MN\) là đường trung tuyến đồng thời là đường phân giác của \(\Delta ADM\) nên
\(\widehat {AMN} = \frac{1}{2}\widehat {AMD} = \frac{1}{2} \cdot 90^\circ = 45^\circ \;\left( 3 \right).\)
Từ \(\left( 2 \right),\;\left( 3 \right)\) ta có: \(MA\) là tia phân giác của \(\widehat {BMN}\;\left( 4 \right).\)
Từ \(\left( 1 \right),\;\left( 4 \right)\) ta có: Tứ giác \(ANMB\) là hình vuông. Do đó, \(BN = AM = 6\;{\rm{cm}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

