Trong một thí nghiệm y học, người ta cấy 1000 vi khuẩn vào môi trường dinh dưỡng bằng thực nghiệm, người ta xác định được số lượng vi khuẩn thay đổi theo thời gian bởi công thức \(N\left( t \right) = 1000 + \frac{{100t}}{{100 + {t^2}}}\) (con), trong đó t là thời gian tính bằng giây. Hỏi thời gian bằng bao nhiêu để số lượng vi khuẩn đạt cực đại.
Trong một thí nghiệm y học, người ta cấy 1000 vi khuẩn vào môi trường dinh dưỡng bằng thực nghiệm, người ta xác định được số lượng vi khuẩn thay đổi theo thời gian bởi công thức \(N\left( t \right) = 1000 + \frac{{100t}}{{100 + {t^2}}}\) (con), trong đó t là thời gian tính bằng giây. Hỏi thời gian bằng bao nhiêu để số lượng vi khuẩn đạt cực đại.
Quảng cáo
Trả lời:
Có \(N'\left( t \right) = \frac{{100\left( {100 + {t^2}} \right) - 200{t^2}}}{{{{\left( {100 + {t^2}} \right)}^2}}}\)\( = \frac{{{{100}^2} - 100{t^2}}}{{{{\left( {100 + {t^2}} \right)}^2}}}\);
\(N'\left( t \right) = 0 \Leftrightarrow t = 10\) (vì t > 0).
Ta có bảng biến thiên

Dựa vào bảng biến thiên, ta có số lượng vi khuẩn đạt cực đại khi t = 10 giây.
Trả lời: 10.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Hàm số \(y = f(x)\) đồng biến trên các khoảng \(( - \infty ; - 1)\) và \((1; + \infty ).\)
b) Giá trị cực đại là y = 3, giá trị cực tiểu là y = –1.
Do đó tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho là 3 – 1 = 2.
c) Hàm số \(y = f(x)\)có hai cực trị là \(x = \pm 1.\)
d) Gọi \[d:y = ax + b\] là đường thẳng qua hai điểm cực trị \[A( - 1;3),B(1; - 1).\]
\[A,B \in d \Rightarrow \left\{ \begin{array}{l} - a + b = 3\\a + b = - 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = - 2\\b = 1\end{array} \right. \Rightarrow d:y = - 2x + 1\].
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Sai.
Câu 2
Lời giải
Tập xác định \(D = \left[ {0;2} \right]\).
Ta có \(y' = \frac{{1 - x}}{{\sqrt {2x - {x^2}} }}\); \(y' = 0 \Leftrightarrow x = 1\).
Bảng biến thiên:

Vậy hàm số nghịch biến trên khoảng \(\left( {1;2} \right)\). Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

