Một chất điểm chuyển động theo phương trình \(s\left( t \right) = - \frac{{{t^3}}}{3} + 18{t^2} - 35t + 10\), trong đó \(t\) tính bằng giây và \(s\)tính bằng mét. Trong 40 giây đầu tiên, chất điểm có vận tốc tức thời giảm trong khoảng thời gian \(\left( {a;b} \right)\). Tính giá trị của biểu thức \(P = 2b - 3a\).
Một chất điểm chuyển động theo phương trình \(s\left( t \right) = - \frac{{{t^3}}}{3} + 18{t^2} - 35t + 10\), trong đó \(t\) tính bằng giây và \(s\)tính bằng mét. Trong 40 giây đầu tiên, chất điểm có vận tốc tức thời giảm trong khoảng thời gian \(\left( {a;b} \right)\). Tính giá trị của biểu thức \(P = 2b - 3a\).
Quảng cáo
Trả lời:

Vận tốc tức thời của chất điểm là \(v\left( t \right) = s'\left( t \right) = - {t^2} + 36t - 35\).
Gia tốc tức thời của chất điểm là \(a\left( t \right) = v'\left( t \right) = - 2t + 36\).
Vì vận tốc tức thời của chất điểm giảm nên \(a\left( t \right) < 0 \Leftrightarrow - 2t + 36 < 0 \Leftrightarrow t > 18\).
Do đó, trong 40 giây đầu tiên, chất điểm có vận tốc tức thời giảm trong khoảng thời gian \(\left( {18;40} \right)\). Suy ra \(a = 18\), \(b = 40\).
Vậy \(P = 2b - 3a = 26\).
Trả lời: 26.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Hàm số \(y = f(x)\) đồng biến trên các khoảng \(( - \infty ; - 1)\) và \((1; + \infty ).\)
b) Giá trị cực đại là y = 3, giá trị cực tiểu là y = –1.
Do đó tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho là 3 – 1 = 2.
c) Hàm số \(y = f(x)\)có hai cực trị là \(x = \pm 1.\)
d) Gọi \[d:y = ax + b\] là đường thẳng qua hai điểm cực trị \[A( - 1;3),B(1; - 1).\]
\[A,B \in d \Rightarrow \left\{ \begin{array}{l} - a + b = 3\\a + b = - 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = - 2\\b = 1\end{array} \right. \Rightarrow d:y = - 2x + 1\].
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Sai.
Lời giải
Có \(N'\left( t \right) = \frac{{100\left( {100 + {t^2}} \right) - 200{t^2}}}{{{{\left( {100 + {t^2}} \right)}^2}}}\)\( = \frac{{{{100}^2} - 100{t^2}}}{{{{\left( {100 + {t^2}} \right)}^2}}}\);
\(N'\left( t \right) = 0 \Leftrightarrow t = 10\) (vì t > 0).
Ta có bảng biến thiên

Dựa vào bảng biến thiên, ta có số lượng vi khuẩn đạt cực đại khi t = 10 giây.
Trả lời: 10.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.