Câu hỏi:

11/09/2025 11 Lưu

Bạn Vân là học sinh giỏi của một trường THPT nên được hưởng học bổng hằng tháng là 4 triệu đồng. Học bổng được cấp vào đầu tháng. Vì muốn để dành tiền đóng học phí vào năm nhất đại học nên bắt đầu từ đầu tháng 9/2023 (đầu năm học lớp 11), cứ đầu tháng bạn Vân dành 30% số tiền học bổng nói trên để gửi tiết kiệm ở ngân hàng với lãi suất 0,4%/tháng và sẽ cố gắng giữ vững thành tích học tập để nhận học bổng đến hết tháng 8/2025. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu, học bổng được cấp đến hết tháng 8/2025. Hỏi đến hết tháng 8/2025 bạn Vân có bao nhiêu tiền để đóng học phí học đại học?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Từ đề bài ta suy ra được mỗi tháng bạn Vân trích ra \(4 \cdot 30\% = 1,2\)triệu đồng để gửi tiết kiệm.

Tháng 9/2023 bạn Vân gửi 1,2 triệu đồng với lãi suất 0,4% mỗi tháng thì đến hết tháng 8/2025 thì số tiền bạn nhận được là: \({u_{24}} = 1,2{\left( {1 + 0,004} \right)^{24}}\).

Tháng 10/2023 bạn Vân gửi 1,2 triệu đồng với lãi suất 0,4% mỗi tháng thì đến hết tháng 8/2025 thì số tiền bạn nhận được là: \({u_{23}} = 1,2{\left( {1 + 0,004} \right)^{23}}\).

Tháng 8/2025 bạn Vân gửi 1,2 triệu đồng với lãi suất 0,4% mỗi tháng thì đến hết tháng 8/2025 thì số tiền bạn nhận được là: \[{u_1} = 1,2\left( {1 + 0,004} \right) = 1,2048\].

Số tiền bạn Vân nhận được khi gửi tiết kiệm như thế tạo thành một cấp số nhân với số hạng đầu \({u_1} = 1,2\left( {1 + 0,004} \right) = 1,2048\) và công bội \(q = 1,004\).

Vậy tổng số tiền bạn Vân nhận được chính là tổng 24 số hạng đầu của một cấp số nhân ở trên.

\({S_{24}} = \frac{{{u_1}\left( {1 - {q^{24}}} \right)}}{{1 - q}} = \frac{{1,2048\left( {1 - 1,{{004}^{24}}} \right)}}{{1 - 1,004}} \approx 30,285148\) (triệu đồng).

Vậy số tiền bạn Vân nhận được đến hết tháng 8/2025 là 30 285 148 đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bảng tần số ghép nhóm của mẫu số liệu như sau:

Thời gian sử dụng điện thoại trong một ngày của 30 sinh viên được ghi lại ở bảng 1 sau (đơn vị: phút).

Khi ghép nhóm dãy số liệu trên thành các khoảng có độ rộng bằng nhau, khoảng đầu tiên l (ảnh 2)

Gọi \({x_1};{x_2}; \ldots ;{x_{30}}\) là mẫu số liệu được xếp theo thứ tự không giảm.

Ta có: \({x_1},{x_2} \in \left[ {0;60} \right);{x_3}, \ldots ,{x_9} \in \left[ {60;120} \right);{x_{10}}, \ldots ,{x_{16}} \in \left[ {120;180} \right)\);

\({x_{17}}, \ldots ,{x_{26}} \in \left[ {180;240} \right);{x_{27}}, \ldots ,{x_{30}} \in \left[ {240;300} \right)\).

Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là \({x_{23}} \in \left[ {180;240} \right)\).

Ta có \({Q_3} = 180 + \frac{{\frac{{3 \cdot 30}}{4} - \left( {2 + 7 + 7} \right)}}{{10}} \cdot \left( {240 - 180} \right) = 219\).

Đáp án:\(219\).

Câu 2

Lời giải

Điều kiện xác định: \(\sin x \ne 1 \Leftrightarrow x \ne \frac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right)\).

Tập xác định: \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k2\pi \left| {k \in \mathbb{Z}} \right.} \right\}\).

Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP