Câu hỏi:

11/09/2025 8 Lưu

Giả sử khi một cơn sóng biển đi qua một cái cọc ở ngoài khơi, chiều cao của nước được mô hình hoá bởi hàm số \(h\left( t \right) = 90{\rm{cos}}\left( {\frac{\pi }{3}t} \right)\), trong đó \(h\left( t \right)\) là độ cao tính bằng centimét trên mực nước biển trung bình tại thời điểm \(t\) giây \(\left( {t \ge 0} \right)\). Tìm tất cả các thời điểm trong khoảng 9 giây đầu tiên để chiều cao của sóng đạt 45 cm.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(h\left( t \right) = 45 \Rightarrow 90\cos \left( {\frac{\pi }{3}t} \right) = 45 \Leftrightarrow \cos \left( {\frac{\pi }{3}t} \right) = \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{3}t = \frac{\pi }{3} + k2\pi \\\frac{\pi }{3}t = - \frac{\pi }{3} + k2\pi \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}t = 1 + 6k\\t = - 1 + 6k\end{array} \right.\left( {k \in \mathbb{Z}} \right)\).

Vì \(0 \le t \le 9 \Rightarrow \left[ \begin{array}{l}0 \le 1 + 6k \le 9\\0 \le - 1 + 6k \le 9\end{array} \right. \Rightarrow \left[ \begin{array}{l} - \frac{1}{6} \le k \le \frac{4}{3} \Rightarrow \left[ \begin{array}{r}k = 0 \Rightarrow t = 1\,{\rm{s}}\\k = 1 \Rightarrow t = 7\,{\rm{s}}\end{array} \right.\\\frac{1}{6} \le k \le \frac{5}{3} \Rightarrow k = 1 \Rightarrow t = 5\,{\rm{s}}\end{array} \right.\) (do \(k \in \mathbb{Z}\)).

Vậy \[t = 1\,{\rm{s}}\], \[t = 5\,{\rm{s}}\], \[t = 7\,{\rm{s}}\] là các thời điểm cần tìm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bảng tần số ghép nhóm của mẫu số liệu như sau:

Thời gian sử dụng điện thoại trong một ngày của 30 sinh viên được ghi lại ở bảng 1 sau (đơn vị: phút).

Khi ghép nhóm dãy số liệu trên thành các khoảng có độ rộng bằng nhau, khoảng đầu tiên l (ảnh 2)

Gọi \({x_1};{x_2}; \ldots ;{x_{30}}\) là mẫu số liệu được xếp theo thứ tự không giảm.

Ta có: \({x_1},{x_2} \in \left[ {0;60} \right);{x_3}, \ldots ,{x_9} \in \left[ {60;120} \right);{x_{10}}, \ldots ,{x_{16}} \in \left[ {120;180} \right)\);

\({x_{17}}, \ldots ,{x_{26}} \in \left[ {180;240} \right);{x_{27}}, \ldots ,{x_{30}} \in \left[ {240;300} \right)\).

Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là \({x_{23}} \in \left[ {180;240} \right)\).

Ta có \({Q_3} = 180 + \frac{{\frac{{3 \cdot 30}}{4} - \left( {2 + 7 + 7} \right)}}{{10}} \cdot \left( {240 - 180} \right) = 219\).

Đáp án:\(219\).

Câu 2

Lời giải

Điều kiện xác định: \(\sin x \ne 1 \Leftrightarrow x \ne \frac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right)\).

Tập xác định: \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k2\pi \left| {k \in \mathbb{Z}} \right.} \right\}\).

Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP