Câu hỏi:

12/09/2025 56 Lưu

Cho mẫu số liệu ghép nhóm về thời gian (phút) đi từ nhà đến nơi làm việc của các nhân viên một công ty như sau:

Thời gian

\(\left[ {15;20} \right)\)

\(\left[ {20;25} \right)\)

\(\left[ {25;30} \right)\)

\(\left[ {30;35} \right)\)

\(\left[ {35;40} \right)\)

\(\left[ {40;45} \right)\)

\(\left[ {45;50} \right)\)

Số nhân viên

7

14

25

37

21

14

10

Tứ phân vị thứ nhất \({Q_1}\) và tứ phân vị thứ ba \({Q_3}\) của mẫu số liệu ghép nhóm này là

A. \({Q_1} = \frac{{1360}}{{37}},{Q_3} = \frac{{800}}{{21}}\).                                                  
B. \({Q_1} = \frac{{1360}}{{37}},{Q_3} = \frac{{3280}}{{83}}\).
C. \({Q_1} = \frac{{136}}{5},{Q_3} = \frac{{3280}}{{83}}\).                                                
D. \({Q_1} = \frac{{136}}{5},{Q_3} = \frac{{800}}{{21}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cỡ mẫu \(n = 7 + 14 + 25 + 37 + 21 + 14 + 10 = 128\).

Giả sử \({x_1};{x_2};...;{x_{128}}\) thời gian đi từ nhà đến nơi làm việc của 128 nhân viên được sắp xếp theo thứ tự tăng dần.

Ta có tứ phân vị thứ nhất của mẫu số liệu là \(\frac{{{x_{32}} + {x_{33}}}}{2}\). Mà \({x_{32}};{x_{33}}\) thuộc nhóm [25; 30) nên nhóm chứa tứ phân vị thứ nhất là [25; 30).

Ta có \({Q_1} = 25 + \frac{{\frac{{128}}{4} - 21}}{{25}}.\left( {30 - 25} \right) = \frac{{136}}{5}\).

Với tứ phân vị thứ ba \({Q_3}\)\(\frac{{{x_{96}} + {x_{97}}}}{2}\). Do \({x_{96}},{x_{97}}\) đều thuộc nhóm \([35;40)\) nên nhóm này chứa \({Q_3}\).

\({Q_3} = 35 + \frac{{\frac{{3.128}}{4} - 83}}{{21}} \cdot 5 = \frac{{800}}{{21}}\). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \[P = (1 - 3\cos \alpha )(1 + 3\cos \alpha ) = 1 - {\left( {3\cos \alpha } \right)^2} = 1 - 9{\cos ^2}\alpha \].

Ta có \[\sin \alpha = \frac{2}{3}\], \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Rightarrow {\cos ^2}\alpha = \frac{5}{9}\).

\(P = 1 - 9.\frac{5}{9} = - 4\).

b) \[{\sin ^2}\alpha + {\cos ^2}\alpha = 1\]\[ \Rightarrow {\cos ^2}\alpha {\rm{ = 1}} - {\sin ^2}\alpha = 1 - \frac{9}{{25}} = \frac{{16}}{{25}}\] \( \Leftrightarrow \left[ \begin{array}{l}{\rm{cos}}\alpha = \frac{4}{5}\\{\rm{cos}}\alpha = - \frac{4}{5}\end{array} \right.\)

\({\rm{90}}^\circ < \alpha < 180^\circ \)\( \Rightarrow {\rm{cos}}\alpha = - \frac{4}{5}\). Vậy \(\tan \alpha = - \frac{3}{4}\)\(\cot \alpha = - \frac{4}{3}\).

\(E = \frac{{\cot \alpha - 2\tan \alpha }}{{\tan \alpha + 3\cot \alpha }} = \frac{{ - \frac{4}{3} - 2.\left( { - \frac{3}{4}} \right)}}{{ - \frac{3}{4} + 3.\left( { - \frac{4}{3}} \right)}} = - \frac{2}{{57}}\).

Lời giải

Theo bài ra ta có \({u_1} = \frac{1}{2}\), \({u_4} = 32\)\({u_n} = 2048\).

\({u_4} = {u_1}.{q^3}\) \( \Rightarrow 32 = \frac{1}{2}.{q^3}\)\( \Rightarrow q = 4\)

\({u_n} = 2048\)\( \Rightarrow {u_1}.\,{q^{n - 1}} = 2048\)\( \Rightarrow {4^{n - 1}} = {4^6}\)\( \Rightarrow n = 7\)

Khi đó tổng của cấp số nhân này là \({S_7} = \frac{{{u_1}\left( {1 - {q^7}} \right)}}{{1 - q}} = \frac{{\frac{1}{2}\left( {1 - {4^7}} \right)}}{{1 - 4}} = \frac{{5461}}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP