Trong hoạt động bảo vệ môi trường, các học sinh lớp 11A1 tiến hành trồng cây. Kết quả sau hoạt động được ghi lại ở bảng sau:
|
Số cây |
\(\left[ {1;8} \right)\) |
\(\left[ {8;15} \right)\) |
\(\left[ {15;22} \right)\) |
\(\left[ {22;29} \right)\) |
\(\left[ {29;36} \right)\) |
|
Số học sinh |
7 |
15 |
6 |
10 |
3 |
Hãy tìm số trung vị của mẫu số liệu ghép nhóm trên.
Quảng cáo
Trả lời:
Cỡ mẫu \(n = 7 + 15 + 6 + 10 + 3 = 41\).
Giả sử \({x_1};{x_2};...;{x_{41}}\) số cây trồng được của 41 học sinh được sắp xếp theo thứ tự tăng dần.
Trung vị của mẫu số liệu là \({x_{21}}\). Mà \({x_{21}}\)thuộc nhóm \(\left[ {8;15} \right)\) nên nhóm chứa trung vị là \(\left[ {8;15} \right)\).
Ta có \({M_e} = 8 + \frac{{\frac{{41}}{2} - 7}}{{15}}.\left( {15 - 8} \right) = 14,3\). Chọn A.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[\sin \alpha = \frac{2}{3}\], \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Rightarrow {\cos ^2}\alpha = \frac{5}{9}\).
\(P = 1 - 9.\frac{5}{9} = - 4\).
b) \[{\sin ^2}\alpha + {\cos ^2}\alpha = 1\]\[ \Rightarrow {\cos ^2}\alpha {\rm{ = 1}} - {\sin ^2}\alpha = 1 - \frac{9}{{25}} = \frac{{16}}{{25}}\] \( \Leftrightarrow \left[ \begin{array}{l}{\rm{cos}}\alpha = \frac{4}{5}\\{\rm{cos}}\alpha = - \frac{4}{5}\end{array} \right.\)
Vì \({\rm{90}}^\circ < \alpha < 180^\circ \)\( \Rightarrow {\rm{cos}}\alpha = - \frac{4}{5}\). Vậy \(\tan \alpha = - \frac{3}{4}\) và \(\cot \alpha = - \frac{4}{3}\).
\(E = \frac{{\cot \alpha - 2\tan \alpha }}{{\tan \alpha + 3\cot \alpha }} = \frac{{ - \frac{4}{3} - 2.\left( { - \frac{3}{4}} \right)}}{{ - \frac{3}{4} + 3.\left( { - \frac{4}{3}} \right)}} = - \frac{2}{{57}}\).
Lời giải
Theo bài ra ta có \({u_1} = \frac{1}{2}\), \({u_4} = 32\) và \({u_n} = 2048\).
\({u_4} = {u_1}.{q^3}\) \( \Rightarrow 32 = \frac{1}{2}.{q^3}\)\( \Rightarrow q = 4\)
\({u_n} = 2048\)\( \Rightarrow {u_1}.\,{q^{n - 1}} = 2048\)\( \Rightarrow {4^{n - 1}} = {4^6}\)\( \Rightarrow n = 7\)
Khi đó tổng của cấp số nhân này là \({S_7} = \frac{{{u_1}\left( {1 - {q^7}} \right)}}{{1 - q}} = \frac{{\frac{1}{2}\left( {1 - {4^7}} \right)}}{{1 - 4}} = \frac{{5461}}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.