Cho mẫu số liệu ghép nhóm về lương của nhân viên trong một công ty như sau
Lương (triệu đồng)
[9; 12)
[12; 15)
[15; 18)
[18; 21)
[21; 24)
Số nhân viên
6
12
4
2
1
a) Giá trị đại diện của nhóm [9; 12) là 10,5.
b) Trung bình lương các nhân viên là 16,5 triệu đồng.
c) Nhóm chứa trung vị là [15; 18).
d) Tứ phân vị thứ ba gần bằng 15,56.
Cho mẫu số liệu ghép nhóm về lương của nhân viên trong một công ty như sau
Lương (triệu đồng) |
[9; 12) |
[12; 15) |
[15; 18) |
[18; 21) |
[21; 24) |
Số nhân viên |
6 |
12 |
4 |
2 |
1 |
a) Giá trị đại diện của nhóm [9; 12) là 10,5.
b) Trung bình lương các nhân viên là 16,5 triệu đồng.
c) Nhóm chứa trung vị là [15; 18).
d) Tứ phân vị thứ ba gần bằng 15,56.
Quảng cáo
Trả lời:

a) Giá trị đại diện của nhóm [9; 12) là \(\frac{{9 + 12}}{2} = 10,5\).
b) Trung bình lương các nhân viên là:
\(\overline x = \frac{1}{{25}}\left( {6.10,5 + 12.13,5 + 4.16,5 + 2.19,5 + 22,5} \right) = 14,1\) triệu đồng.
c) Công ty có 25 nhân sự.
Gọi \({x_1};{x_2};...;{x_{25}}\) là lương của 25 nhân viên được sắp xếp theo thứ tự không giảm.
Ta có \({x_{13}} \in \left[ {12;15} \right)\) nên nhóm này chứa trung vị.
d) Có \({Q_3} = \frac{{{x_{19}} + {x_{20}}}}{2}\) mà \({x_{19}};{x_{20}} \in \left[ {15;18} \right)\) nên ta có \({Q_3} = 15 + \frac{{\frac{{3.25}}{4} - 18}}{4}.3 \approx 15,56\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có \(\left\{ \begin{array}{l}{u_1} + {u_5} = 51\\{u_2} + {u_6} = 102\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + {u_1}{q^4} = 51\\{u_1}q + {u_1}{q^5} = 102\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}(1 + {q^4}) = 51{\rm{ }}\\{u_1}q(1 + {q^4}) = 102\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}(1 + {q^4}) = 51{\rm{ }}\\q.51 = 102\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 3\\q = 2\end{array} \right.\).
b) Có \({S_n} = 3069 \Leftrightarrow {u_1}.\frac{{1 - {q^n}}}{{1 - q}} = 3069 \Leftrightarrow 3.\frac{{1 - {2^n}}}{{1 - 2}} = 3069 \Leftrightarrow {2^n} = 1024 \Rightarrow n = 10\).
Kết luận tổng của 10 số hạng đầu tiên bằng 3069.
c) Có \({u_k} = 12288 \Leftrightarrow {u_1}.{q^{k - 1}} = 12288 \Leftrightarrow {3.2^{k - 1}} = 12288 \Leftrightarrow {2^{k - 1}} = 4096 = {2^{12}}\)
\( \Rightarrow k - 1 = 12 \Leftrightarrow k = 13\).
Kết luận số 12288 là số hạng thứ 13.
Lời giải
Theo bài ra ta có \({u_1} = \frac{1}{2}\), \({u_4} = 32\) và \({u_n} = 2048\).
\({u_4} = {u_1}.{q^3}\) \( \Rightarrow 32 = \frac{1}{2}.{q^3}\)\( \Rightarrow q = 4\)
\({u_n} = 2048\)\( \Rightarrow {u_1}.\,{q^{n - 1}} = 2048\)\( \Rightarrow {4^{n - 1}} = {4^6}\)\( \Rightarrow n = 7\)
Khi đó tổng của cấp số nhân này là \({S_7} = \frac{{{u_1}\left( {1 - {q^7}} \right)}}{{1 - q}} = \frac{{\frac{1}{2}\left( {1 - {4^7}} \right)}}{{1 - 4}} = \frac{{5461}}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.