Câu hỏi:

11/09/2025 24 Lưu

Kết quả đo khối lượng của 30 củ khoai tây ở nông trường được biểu diễn ở biểu đồ dưới đây

Tính gần đúng đến hàng phần chục mốt của mẫu số liệu trên. (ảnh 1)

Tính gần đúng đến hàng phần chục mốt của mẫu số liệu trên.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Dựa vào biểu đồ ta có bảng số liệu sau:

Khối lượng

[70; 80)

[80; 90)

[90; 100)

[100; 110)

[110; 120)

Giá trị đại diện

75

85

95

105

115

Số củ

3

5

12

6

3

Nhóm chứa mốt của mẫu số liệu là [90; 100).

Khi đó mốt của mẫu số liệu ghép nhóm là \({M_0} = 90 + \frac{{12 - 5}}{{\left( {12 - 5} \right) + \left( {12 - 6} \right)}}.10 = \frac{{1240}}{{13}} \approx 95,4\)(gam).

Trả lời: 95,4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có \(\left\{ \begin{array}{l}{u_1} + {u_5} = 51\\{u_2} + {u_6} = 102\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + {u_1}{q^4} = 51\\{u_1}q + {u_1}{q^5} = 102\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}(1 + {q^4}) = 51{\rm{   }}\\{u_1}q(1 + {q^4}) = 102\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}(1 + {q^4}) = 51{\rm{   }}\\q.51 = 102\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 3\\q = 2\end{array} \right.\).

b) Có \({S_n} = 3069 \Leftrightarrow {u_1}.\frac{{1 - {q^n}}}{{1 - q}} = 3069 \Leftrightarrow 3.\frac{{1 - {2^n}}}{{1 - 2}} = 3069 \Leftrightarrow {2^n} = 1024 \Rightarrow n = 10\).

Kết luận tổng của 10 số hạng đầu tiên bằng 3069.

c) Có \({u_k} = 12288 \Leftrightarrow {u_1}.{q^{k - 1}} = 12288 \Leftrightarrow {3.2^{k - 1}} = 12288 \Leftrightarrow {2^{k - 1}} = 4096 = {2^{12}}\)

\( \Rightarrow k - 1 = 12 \Leftrightarrow k = 13\).

Kết luận số 12288 là số hạng thứ 13.

Lời giải

Theo bài ra ta có \({u_1} = \frac{1}{2}\), \({u_4} = 32\)\({u_n} = 2048\).

\({u_4} = {u_1}.{q^3}\) \( \Rightarrow 32 = \frac{1}{2}.{q^3}\)\( \Rightarrow q = 4\)

\({u_n} = 2048\)\( \Rightarrow {u_1}.\,{q^{n - 1}} = 2048\)\( \Rightarrow {4^{n - 1}} = {4^6}\)\( \Rightarrow n = 7\)

Khi đó tổng của cấp số nhân này là \({S_7} = \frac{{{u_1}\left( {1 - {q^7}} \right)}}{{1 - q}} = \frac{{\frac{1}{2}\left( {1 - {4^7}} \right)}}{{1 - 4}} = \frac{{5461}}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP