Câu hỏi:

12/09/2025 35 Lưu

Giải các phương trình sau

a) \(\frac{3}{2} - 3\cos 4x = 6\sin x.\sin 3x\);                                  b) \(\sin 4x + 1 - 2\cos 2x = \sin 2x\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \(\frac{3}{2} - 3\cos 4x = 6\sin x.\sin 3x\)

\( \Leftrightarrow \frac{3}{2} - 3\cos 4x = 3(\cos 2x - \cos 4x)\)

\( \Leftrightarrow 3\cos 2x = \frac{3}{2}\)

\[ \Leftrightarrow \cos 2x = \frac{1}{2}\,\]

\[ \Leftrightarrow {\mathop{\rm x}\nolimits} = \pm \frac{\pi }{6} + {\mathop{\rm k}\nolimits} \pi ,{\mathop{\rm k}\nolimits} \in \mathbb{Z}\,\].

b) \(\sin 4x + 1 - 2\cos 2x = \sin 2x\)

\( \Leftrightarrow 2\sin 2x.\cos 2x + 1 - 2\cos 2x - \sin 2x = 0\)

\( \Leftrightarrow \left( {\sin 2x - 1} \right)\left( {2\cos 2x - 1} \right) = 0\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\sin 2x = 1}\\{\cos 2x = \frac{1}{2}}\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{4} + k\pi }\\{x = \pm \frac{\pi }{6} + k\pi }\end{array}\quad \left( {k \in \mathbb{Z}} \right)} \right..\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có \(\left\{ \begin{array}{l}{u_1} + {u_5} = 51\\{u_2} + {u_6} = 102\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + {u_1}{q^4} = 51\\{u_1}q + {u_1}{q^5} = 102\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}(1 + {q^4}) = 51{\rm{   }}\\{u_1}q(1 + {q^4}) = 102\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}(1 + {q^4}) = 51{\rm{   }}\\q.51 = 102\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 3\\q = 2\end{array} \right.\).

b) Có \({S_n} = 3069 \Leftrightarrow {u_1}.\frac{{1 - {q^n}}}{{1 - q}} = 3069 \Leftrightarrow 3.\frac{{1 - {2^n}}}{{1 - 2}} = 3069 \Leftrightarrow {2^n} = 1024 \Rightarrow n = 10\).

Kết luận tổng của 10 số hạng đầu tiên bằng 3069.

c) Có \({u_k} = 12288 \Leftrightarrow {u_1}.{q^{k - 1}} = 12288 \Leftrightarrow {3.2^{k - 1}} = 12288 \Leftrightarrow {2^{k - 1}} = 4096 = {2^{12}}\)

\( \Rightarrow k - 1 = 12 \Leftrightarrow k = 13\).

Kết luận số 12288 là số hạng thứ 13.

Lời giải

Theo bài ra ta có \({u_1} = \frac{1}{2}\), \({u_4} = 32\)\({u_n} = 2048\).

\({u_4} = {u_1}.{q^3}\) \( \Rightarrow 32 = \frac{1}{2}.{q^3}\)\( \Rightarrow q = 4\)

\({u_n} = 2048\)\( \Rightarrow {u_1}.\,{q^{n - 1}} = 2048\)\( \Rightarrow {4^{n - 1}} = {4^6}\)\( \Rightarrow n = 7\)

Khi đó tổng của cấp số nhân này là \({S_7} = \frac{{{u_1}\left( {1 - {q^7}} \right)}}{{1 - q}} = \frac{{\frac{1}{2}\left( {1 - {4^7}} \right)}}{{1 - 4}} = \frac{{5461}}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP