Một đa giác có chu vi là \[158\;{\rm{cm}}\], độ dài các cạnh của nó lập thành một cấp số cộng. Biết cạnh lớn nhất có độ dài là \[44\;{\rm{cm}}\]. Tìm số cạnh của đa giác đó?
Một đa giác có chu vi là \[158\;{\rm{cm}}\], độ dài các cạnh của nó lập thành một cấp số cộng. Biết cạnh lớn nhất có độ dài là \[44\;{\rm{cm}}\]. Tìm số cạnh của đa giác đó?
Quảng cáo
Trả lời:

Giả sử đa giác có \(n\) cạnh (\(n \in \mathbb{N},\,\,n \ge 3\)).
Gọi độ dài các cạnh của đa giác là \({u_1},\,{u_2},\,{u_3},\,...\,,\,{u_n}\) theo thứ tự lập thành cấp số cộng và cạnh lớn nhất có độ dài là 44 cm nên \(0 < {u_1} < {u_2} < \,{u_3} < \,...\, < \,{u_n} = 44\;{\rm{cm}}\).
Vì đa giác có chu vi là \[158\;{\rm{cm}}\] nên \[{S_n} = {u_1} + {u_2} + \,{u_3} + \,...\, + \,{u_n} = \frac{{\left( {{u_1} + {u_n}} \right)n}}{2}\]
hay \[158 = \frac{{\left( {{u_1} + 44} \right)n}}{2}\] suy ra \[n = \frac{{316}}{{{u_1} + 44}}\]
Mà \(n \in \mathbb{N}\) nên \[{u_1} + 44\] là ước nguyên dương của \[316\] hay \[{u_1} + 44 \in \left\{ {2;\,\,4;\,\,79;\,\,158;\,\,316} \right\}\].
\[{u_1} + 44\] |
\(2\) |
\(4\) |
\(79\) |
\(158\) |
\(316\) |
\[{u_1}\] |
\[{u_1} < 0\] (loại) |
\[{u_1} < 0\](loại) |
\[{u_1} = 35\] |
\[{u_1} = 114\](không thỏa mãn vì \({u_n} = 44\;{\rm{cm}}\)) |
\[{u_1} = 272\](không thỏa mãn vì \({u_n} = 44\;{\rm{cm}}\)) |
Vậy đa giác đã cho có \[n = \frac{{316}}{{79}} = 4\] cạnh.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có \(\left\{ \begin{array}{l}{u_1} + {u_5} = 51\\{u_2} + {u_6} = 102\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + {u_1}{q^4} = 51\\{u_1}q + {u_1}{q^5} = 102\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}(1 + {q^4}) = 51{\rm{ }}\\{u_1}q(1 + {q^4}) = 102\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}(1 + {q^4}) = 51{\rm{ }}\\q.51 = 102\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 3\\q = 2\end{array} \right.\).
b) Có \({S_n} = 3069 \Leftrightarrow {u_1}.\frac{{1 - {q^n}}}{{1 - q}} = 3069 \Leftrightarrow 3.\frac{{1 - {2^n}}}{{1 - 2}} = 3069 \Leftrightarrow {2^n} = 1024 \Rightarrow n = 10\).
Kết luận tổng của 10 số hạng đầu tiên bằng 3069.
c) Có \({u_k} = 12288 \Leftrightarrow {u_1}.{q^{k - 1}} = 12288 \Leftrightarrow {3.2^{k - 1}} = 12288 \Leftrightarrow {2^{k - 1}} = 4096 = {2^{12}}\)
\( \Rightarrow k - 1 = 12 \Leftrightarrow k = 13\).
Kết luận số 12288 là số hạng thứ 13.
Lời giải
Theo bài ra ta có \({u_1} = \frac{1}{2}\), \({u_4} = 32\) và \({u_n} = 2048\).
\({u_4} = {u_1}.{q^3}\) \( \Rightarrow 32 = \frac{1}{2}.{q^3}\)\( \Rightarrow q = 4\)
\({u_n} = 2048\)\( \Rightarrow {u_1}.\,{q^{n - 1}} = 2048\)\( \Rightarrow {4^{n - 1}} = {4^6}\)\( \Rightarrow n = 7\)
Khi đó tổng của cấp số nhân này là \({S_7} = \frac{{{u_1}\left( {1 - {q^7}} \right)}}{{1 - q}} = \frac{{\frac{1}{2}\left( {1 - {4^7}} \right)}}{{1 - 4}} = \frac{{5461}}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.