Một câu lạc bộ thể dục thể thao đã ghi lại số giờ các thành viên của mình sử dụng cơ sở vật chất của câu lạc bộ để tập luyện trong một tháng. Thu được mẫu số liệu ghép nhóm sau
Thời gian (giờ)
\(\left[ {1;5} \right)\)
\(\left[ {5;9} \right)\)
\(\left[ {9;13} \right)\)
\(\left[ {13;17} \right)\)
\(\left[ {17;21} \right)\)
\(\left[ {21;25} \right)\)
Tần số (Số người)
10
14
31
2
5
23
Hãy tính (làm tròn kết quả đến hàng phần mười)
a) Trung vị của mẫu số liệu.
b) Trung bình của mẫu số liệu. Trong trường hợp này thì trung bình hay trung vị đại diện tốt hơn cho mẫu số liệu?
Một câu lạc bộ thể dục thể thao đã ghi lại số giờ các thành viên của mình sử dụng cơ sở vật chất của câu lạc bộ để tập luyện trong một tháng. Thu được mẫu số liệu ghép nhóm sau
|
Thời gian (giờ) |
\(\left[ {1;5} \right)\) |
\(\left[ {5;9} \right)\) |
\(\left[ {9;13} \right)\) |
\(\left[ {13;17} \right)\) |
\(\left[ {17;21} \right)\) |
\(\left[ {21;25} \right)\) |
|
Tần số (Số người) |
10 |
14 |
31 |
2 |
5 |
23 |
Hãy tính (làm tròn kết quả đến hàng phần mười)
a) Trung vị của mẫu số liệu.
b) Trung bình của mẫu số liệu. Trong trường hợp này thì trung bình hay trung vị đại diện tốt hơn cho mẫu số liệu?
Quảng cáo
Trả lời:
|
Thời gian (giờ) |
\(\left[ {1;5} \right)\) |
\(\left[ {5;9} \right)\) |
\(\left[ {9;13} \right)\) |
\(\left[ {13;17} \right)\) |
\(\left[ {17;21} \right)\) |
\(\left[ {21;25} \right)\) |
|
Giá trị đại diện |
3 |
7 |
11 |
15 |
19 |
23 |
|
Tần số (Số người) |
10 |
14 |
31 |
2 |
5 |
23 |
a) Cỡ mẫu: \(n = 10 + 14 + 31 + 2 + 5 + 23 = 85\).
Gọi \({x_1};{x_2};...;{x_{85}}\) thời gian sử dụng cơ sở vật chất của 85 thành viên được sắp xếp theo thứ tự tăng dần.
Trung vị của mẫu số liệu là \({x_{43}}\) mà \({x_{43}}\) thuộc nhóm [9; 13).
Do đó nhóm chứa trung vị là [9; 13).
\({M_e} = 9 + \frac{{42,5 - 24}}{{31}}.4 \approx 11,4\).
b) Trung bình của mẫu số liệu là \(\bar x = \frac{{10.3 + 14.7 + 31.11 + 2.15 + 5.19 + 23.23}}{{85}} \approx 13,2.\)
Trung bình thuộc nhóm \(\left[ {13;17} \right)\)cho thấy trong 85 số liệu đã có ít nhất 55 số liệu nhỏ hơn số trung bình. Suy ra, trong trường hợp này thì trung vị là số đại diện tốt hơn cho mẫu số liệu.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[\sin \alpha = \frac{2}{3}\], \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Rightarrow {\cos ^2}\alpha = \frac{5}{9}\).
\(P = 1 - 9.\frac{5}{9} = - 4\).
b) \[{\sin ^2}\alpha + {\cos ^2}\alpha = 1\]\[ \Rightarrow {\cos ^2}\alpha {\rm{ = 1}} - {\sin ^2}\alpha = 1 - \frac{9}{{25}} = \frac{{16}}{{25}}\] \( \Leftrightarrow \left[ \begin{array}{l}{\rm{cos}}\alpha = \frac{4}{5}\\{\rm{cos}}\alpha = - \frac{4}{5}\end{array} \right.\)
Vì \({\rm{90}}^\circ < \alpha < 180^\circ \)\( \Rightarrow {\rm{cos}}\alpha = - \frac{4}{5}\). Vậy \(\tan \alpha = - \frac{3}{4}\) và \(\cot \alpha = - \frac{4}{3}\).
\(E = \frac{{\cot \alpha - 2\tan \alpha }}{{\tan \alpha + 3\cot \alpha }} = \frac{{ - \frac{4}{3} - 2.\left( { - \frac{3}{4}} \right)}}{{ - \frac{3}{4} + 3.\left( { - \frac{4}{3}} \right)}} = - \frac{2}{{57}}\).
Lời giải
Theo bài ra ta có \({u_1} = \frac{1}{2}\), \({u_4} = 32\) và \({u_n} = 2048\).
\({u_4} = {u_1}.{q^3}\) \( \Rightarrow 32 = \frac{1}{2}.{q^3}\)\( \Rightarrow q = 4\)
\({u_n} = 2048\)\( \Rightarrow {u_1}.\,{q^{n - 1}} = 2048\)\( \Rightarrow {4^{n - 1}} = {4^6}\)\( \Rightarrow n = 7\)
Khi đó tổng của cấp số nhân này là \({S_7} = \frac{{{u_1}\left( {1 - {q^7}} \right)}}{{1 - q}} = \frac{{\frac{1}{2}\left( {1 - {4^7}} \right)}}{{1 - 4}} = \frac{{5461}}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.