Cho đồ thị hàm số \(y = f'(x)\) như hình vẽ.

Hàm số \(y = f(x)\) đạt giá trị nhỏ nhất trên khoảng \(\left[ {0;2} \right]\) tại \[x\] bằng bao nhiêu?
Cho đồ thị hàm số \(y = f'(x)\) như hình vẽ.
Hàm số \(y = f(x)\) đạt giá trị nhỏ nhất trên khoảng \(\left[ {0;2} \right]\) tại \[x\] bằng bao nhiêu?
A. \[x = \frac{2}{3}\].
Quảng cáo
Trả lời:

Dựa vào đồ thị của hàm số \(y = f'(x)\) ta có BBT như sau:
Dựa vào BBT suy ra hàm số \(y = f(x)\) đạt giá trị nhỏ nhất trên khoảng \(\left[ {0;2} \right]\) tại \[x = 1\]. Chọn C.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Dựa vào đồ thị hàm số \(y = f'\left( x \right)\) ta có bảng biến thiên
Dựa vào bảng biến thiên ta thấy:
+) Hàm số đồng biến trên \(\left( { - 2; - 1} \right)\) và \(\left( {2;6} \right)\) suy ra \(f\left( { - 1} \right) > f\left( { - 2} \right)\) và \(f\left( 6 \right) > f\left( 2 \right)\) (1).
+) Hàm số nghịch biến trên \(\left( { - 1;2} \right)\)suy ra \(f\left( { - 1} \right) > f\left( 2 \right)\) (2).
Từ (1), (2) suy ra \(\mathop {\max }\limits_{\left[ { - 2;6} \right]} f\left( x \right) = \max \left\{ {f\left( { - 2} \right),f\left( { - 1} \right),f\left( 2 \right),f\left( 6 \right)} \right\} = \max \left\{ {f\left( { - 1} \right),f\left( 6 \right)} \right\}\).
Đáp án: a) Sai; b) Sai; c) Sai; d) Đúng.
Lời giải
a) Dựa vào bảng biến thiên, ta có hàm số đồng biến trên các khoảng và \(\left( {1; + \infty } \right)\).
b) Dựa vào bảng biến thiên, ta có hàm số đã cho đạt cực đại tại \(x = 0\) và đạt cực tiểu tại \(x = 1\).
c) Ta có \(f\left( x \right) > - 2\) và không tồn tại giá trị của \(x\) để \(f\left( x \right) = - 2\) nên hàm số đã cho không có giá trị nhỏ nhất.
d) Ta có
Vì \( - 2 < - \frac{3}{2} < - 1\) nên đường thẳng \(y = - \frac{3}{2}\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại 1 điểm.
Do đó phương trình \(f\left( x \right) = - \frac{3}{2}\) có duy nhất 1 nghiệm.
Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. Không có \(M\); \[m = - 3\].
B. \[M = - 3\]; \[m = 1\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.