Phần II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, chọn đúng hoặc sai.
Cho hàm số \(y = {x^3} - 3{x^2} + 1\).
a) Hàm số đồng biến trên khoảng \(\left( {3; + \infty } \right)\).
b) Hàm số đạt cực tiểu tại \(x = - 3\).
c) Hàm số đạt giá trị lớn nhất trên đoạn \(\left[ {1;3} \right]\) tại \(x = 1\).
d) Đồ thị hàm số đối xứng qua điểm \(I\left( {1; - 1} \right)\).
Phần II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, chọn đúng hoặc sai.
Cho hàm số \(y = {x^3} - 3{x^2} + 1\).
a) Hàm số đồng biến trên khoảng \(\left( {3; + \infty } \right)\).
b) Hàm số đạt cực tiểu tại \(x = - 3\).
c) Hàm số đạt giá trị lớn nhất trên đoạn \(\left[ {1;3} \right]\) tại \(x = 1\).
d) Đồ thị hàm số đối xứng qua điểm \(I\left( {1; - 1} \right)\).
Quảng cáo
Trả lời:

Tập xác định: \(D = \mathbb{R}\).
Ta có \(y' = 3{x^2} - 6x\); \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\).
Bảng biến thiên
Dựa vào bảng biến thiên ta có:
a) Hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\) nên đồng biến trên khoảng \(\left( {3; + \infty } \right)\).
b) Hàm số đạt cực tiểu tại .
c) Có \(f\left( 1 \right) = - 1;f\left( 2 \right) = - 3;f\left( 3 \right) = 1\). Hàm số đạt giá trị lớn nhất trên đoạn \(\left[ {1;3} \right]\) tại \(x = 3\).
d) Có \(y'' = 6x - 6;y'' = 0 \Leftrightarrow x = 1 \Rightarrow y = - 1\).
Do đó đồ thị hàm số đối xứng qua điểm \(I\left( {1; - 1} \right)\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Thể tích hộp sữa là 1 lít = 1 dm3 = 1000 cm3. Khi đó chiều cao của hộp sữa là \(\frac{{1000}}{{{x^2}}}\) (cm).
Đặt diện tích toàn phần của hộp sữa là \(y = 2{x^2} + 4x.\frac{{1000}}{{{x^2}}} = \frac{{2{x^3} + 4000}}{x}\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).
Xét \(y' = \frac{{4{x^3} - 4000}}{{{x^2}}} = 0 \Leftrightarrow x = 10\) (cm).
Bảng biến thiên
Dựa vào bảng biến thiên ta thấy \(x = 10\)cm thì diện tích toàn phần của hộp sữa sẽ nhỏ nhất là 600 cm2.
Trả lời: 10.
Lời giải
Với \(0 \le t \le 12\) ta có: \(N'\left( t \right) = - 3{t^2} + 24t\); \(N'\left( t \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = 8\end{array} \right.\).
Ta có \(N\left( 0 \right) = 0;N\left( 8 \right) = 256;N\left( {12} \right) = 0\).
Do đó, số người tối đa bị nhiễm bệnh ở địa phương là 256 người trong 12 tuần đầu.
Trả lời: 256.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.