Câu hỏi:

12/09/2025 7 Lưu

Phần III. Trắc nghiệm trả lời ngắn

Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật, \(AB = 2a\), \(BC = a\). Hình chiếu vuông góc \(H\) của đỉnh \(S\) trên mặt phẳng đáy là trung điểm của cạnh \(AB\), góc giữa đường thẳng \(SC\) và mặt phẳng đáy bằng \(60^\circ \). Tính cosin góc giữa hai vectơ \(\overrightarrow {SB} \)\(\overrightarrow {AC} \)(làm tròn đến hàng phần chục).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(\left( {SC,\left( {ABCD} \right)} \right) = \)\(\left( {SC,CH} \right) = \)\(\widehat {SCH} = 60^\circ \).

\[\cos \left( {SB,AC} \right) = \frac{{\overrightarrow {SB} .\overrightarrow {AC} }}{{SB.AC}}\]

\(\overrightarrow {SB} .\overrightarrow {AC} = \left( {\overrightarrow {SH} + \overrightarrow {HB} } \right)\left( {\overrightarrow {AB} + \overrightarrow {BC} } \right)\)\( = \overrightarrow {SH} .\overrightarrow {AB} + \overrightarrow {SH} .\overrightarrow {BC} + \overrightarrow {HB} .\overrightarrow {AB} + \overrightarrow {HB} .\overrightarrow {BC} \)

\( = \overrightarrow {HB} .\overrightarrow {AB} + \overrightarrow {HB} .\overrightarrow {BC} \)\( = \frac{1}{2}A{B^2} = 2{a^2}\).

\(AC = a\sqrt 5 \), \(CH = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \), \(SH = CH.\tan \widehat {SCH} = a\sqrt 6 \).

\(SB = \sqrt {S{H^2} + H{B^2}} \)\( = \sqrt {{{\left( {a\sqrt 6 } \right)}^2} + {a^2}} = a\sqrt 7 \).

\(\cos \left( {\overrightarrow {SB} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {SB} .\overrightarrow {AC} }}{{SB.AC}}\)\( = \frac{{2{a^2}}}{{a\sqrt 7 .a\sqrt 5 }}\)\( = \frac{2}{{\sqrt {35} }} \approx 0,3\).

Trả lời: 0,3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có \[ABCD\] là hình vuông nên \(\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {AD} \) ( qui tắc hình bình hành) suy ra\(\overrightarrow {AC} - \overrightarrow {AB} = \overrightarrow {AD} \).

b) Do \[G\]là trọng tâm tam giác \[SBD\] nên\(\overrightarrow {GS} + \overrightarrow {GB} + \overrightarrow {GD} = \overrightarrow 0 \Rightarrow \left( {\overrightarrow {GA} + \overrightarrow {AS} } \right) + \left( {\overrightarrow {GA} + \overrightarrow {AB} } \right) + \left( {\overrightarrow {GA} + \overrightarrow {AD} } \right) = \overrightarrow 0 \)\( \Rightarrow \overrightarrow {AS} + \overrightarrow {AB} + \overrightarrow {AD} = 3\overrightarrow {AG} .\)

c) Ta có \[ABCD\] là hình vuông nên nên \(AC \bot BD \Rightarrow \overrightarrow {AC} .\overrightarrow {BD} = 0 \Rightarrow 2\overrightarrow {{\rm{IJ}}} .\overrightarrow {BD} = 0 \Rightarrow \overrightarrow {{\rm{IJ}}} .\overrightarrow {BD} = 0\).

d) Do \[G\]là trọng tâm tam giác \[SBD\] nên \(\overrightarrow {AS} + \overrightarrow {AB} + \overrightarrow {AD} = 3\overrightarrow {AG} \)

\({\left( {3\overrightarrow {AG} } \right)^2} = {\left( {\overrightarrow {AS} + \overrightarrow {AB} + \overrightarrow {AD} } \right)^2} \Rightarrow 9A{G^2} = A{S^2} + A{B^2} + A{D^2} + 2\overrightarrow {AS} \overrightarrow {AB} + 2\overrightarrow {AS} \overrightarrow {AD} + 2\overrightarrow {AD} \overrightarrow {AB} \;\left( 1 \right)\).

\(SA\)vuông góc với mặt phẳng \((ABCD)\) nên\(\left\{ \begin{array}{l}SA \bot AB\\SA \bot AD\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\overrightarrow {SA} .\overrightarrow {AD} = 0\\\overrightarrow {SA} .\overrightarrow {AB} = 0\end{array} \right.\;\left( 2 \right)\).

 \[ABCD\] là hình vuông nên \(\overrightarrow {AB} .\overrightarrow {AD} = 0\left( 3 \right)\) .

Từ \[\left( 1 \right);\left( 2 \right);\left( 3 \right)\] ta được \(9A{G^2} = A{S^2} + A{B^2} + A{D^2}.\)

Đáp án: a) Đúng;    b) Sai;    c) Sai;     d) Sai.

Lời giải

Ảnh có chứa hàng, hình tam giác

Nội dung do AI tạo ra có thể không chính xác.

a) Hai vectơ \(\overrightarrow {AD} \)\(\overrightarrow {CB} \) là hai vectơ ngược hướng nên góc giữa chúng bằng 180°.

b) Hai vectơ \(\overrightarrow {BD} \)\(\overrightarrow {BO} \) là hai vectơ cùng hướng nên góc giữa chúng là \(0^\circ \).

c) Ta có \(\left( {\overrightarrow {BA} ,\overrightarrow {CS} } \right) = \left( {\overrightarrow {CD} ,\overrightarrow {CS} } \right) = \widehat {SCD}\).

Áp dụng định lí côsin cho tam giác SCD có:

\(\cos \widehat {SCD} = \frac{{S{C^2} + C{D^2} - S{D^2}}}{{2SC.CD}} = \frac{{{{\left( {2a} \right)}^2} + {a^2} - {{\left( {2a} \right)}^2}}}{{2.2a.a}} = \frac{1}{4}\).

d) Ta có \(\overrightarrow {AO} .\overrightarrow {SD} = - \overrightarrow {OA} .\left( {\overrightarrow {OD} - \overrightarrow {OS} } \right) = - \overrightarrow {OA} .\overrightarrow {OD} + \overrightarrow {OA} .\overrightarrow {OS} = 0\) nên góc giữa hai vectơ \(\overrightarrow {AO} \)\(\overrightarrow {SD} \) bằng 90°.

Đáp án: a) Sai;   b) Sai;   c) Đúng;    d) Sai.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP