Cho tứ diện ABCD có AC và BD cùng vuông góc với AB. Gọi I, J lần lượt là trung điểm của hai cạnh AB, CD. Chứng minh \(IJ \bot AB\).
Cho tứ diện ABCD có AC và BD cùng vuông góc với AB. Gọi I, J lần lượt là trung điểm của hai cạnh AB, CD. Chứng minh \(IJ \bot AB\).
Quảng cáo
Trả lời:

Từ giả thiết ta có \(\overrightarrow {AB} .\overrightarrow {AC} = \overrightarrow {AB} .\overrightarrow {BD} = 0\).
I là trung điểm của AB nên \(\overrightarrow {IA} + \overrightarrow {IB} = \overrightarrow 0 \).
J là trung điểm của CD nên \(\overrightarrow {CJ} + \overrightarrow {DJ} = \overrightarrow 0 \).
Lại có \(\overrightarrow {IJ} = \overrightarrow {IA} + \overrightarrow {AC} + \overrightarrow {CJ} ;\overrightarrow {IJ} = \overrightarrow {IB} + \overrightarrow {BD} + \overrightarrow {DJ} \).
Suy ra \(2\overrightarrow {IJ} = \overrightarrow {AC} + \overrightarrow {BD} \Rightarrow \overrightarrow {IJ} = \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {BD} } \right)\).
Do đó \(\overrightarrow {IJ} .\overrightarrow {AB} = \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {BD} } \right).\overrightarrow {AB} = \frac{1}{2}\overrightarrow {AC} .\overrightarrow {AB} + \frac{1}{2}\overrightarrow {BD} .\overrightarrow {AB} = 0\).
Suy ra \(\overrightarrow {IJ} \bot \overrightarrow {AB} \) hay \(IJ \bot AB\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Hai vectơ \(\overrightarrow {AD} \) và \(\overrightarrow {CB} \) là hai vectơ ngược hướng nên góc giữa chúng bằng 180°.
b) Hai vectơ \(\overrightarrow {BD} \) và \(\overrightarrow {BO} \) là hai vectơ cùng hướng nên góc giữa chúng là \(0^\circ \).
c) Ta có \(\left( {\overrightarrow {BA} ,\overrightarrow {CS} } \right) = \left( {\overrightarrow {CD} ,\overrightarrow {CS} } \right) = \widehat {SCD}\).
Áp dụng định lí côsin cho tam giác SCD có:
\(\cos \widehat {SCD} = \frac{{S{C^2} + C{D^2} - S{D^2}}}{{2SC.CD}} = \frac{{{{\left( {2a} \right)}^2} + {a^2} - {{\left( {2a} \right)}^2}}}{{2.2a.a}} = \frac{1}{4}\).
d) Ta có \(\overrightarrow {AO} .\overrightarrow {SD} = - \overrightarrow {OA} .\left( {\overrightarrow {OD} - \overrightarrow {OS} } \right) = - \overrightarrow {OA} .\overrightarrow {OD} + \overrightarrow {OA} .\overrightarrow {OS} = 0\) nên góc giữa hai vectơ \(\overrightarrow {AO} \) và \(\overrightarrow {SD} \) bằng 90°.
Đáp án: a) Sai; b) Sai; c) Đúng; d) Sai.
Lời giải
Ta có: \(\overrightarrow {IJ} \, = \,\,\overrightarrow {IA} + \,\overrightarrow {AJ} \)\( = \, - \frac{1}{2}\overrightarrow {AB} \, + \frac{1}{2}\left( {\overrightarrow {AC} \, + \,\overrightarrow {AD} } \right)\) \( = \,\frac{1}{2}\left( {\overrightarrow {BC} + \,\overrightarrow {AD} } \right)\)
\( = \,\frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {BD} + \overrightarrow {CD} + \overrightarrow {DC} + \overrightarrow {BC} } \right)\) \( = \,\frac{1}{2}\left( {\overrightarrow {DC} + \overrightarrow {BD} + \overrightarrow {AD} } \right)\).
Vậy đẳng thức sai là \[\overrightarrow {IJ} \, = \,\frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {CD} } \right)\]. Chọn D.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.