Câu hỏi:

12/09/2025 26 Lưu

. Cho ba lực \(\overrightarrow {{F_1}} = \overrightarrow {MA} ,\overrightarrow {{F_2}} = \overrightarrow {MB} ,\overrightarrow {{F_3}} = \overrightarrow {MC} \) cùng tác động vào một ô tô tại điểm M và ô tô đứng yên. Cho biết cường độ hai lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) đều bằng 25N và \(\widehat {AMB} = 60^\circ \). Tính cường độ lực \(\overrightarrow {{F_3}} \)(kết quả làm tròn đến hàng phần mười).

Ảnh có chứa phương tiện, bánh xe, ô tô, Phương tiện đường bộ

Nội dung do AI tạo ra có thể không chính xác.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} = \overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow {MD} \) (với D là điểm sao cho AMBD là hình bình hành).

Ta có \(MA = \left| {\overrightarrow {MA} } \right| = \left| {\overrightarrow {{F_1}} } \right| = 25\) N; \(MB = \left| {\overrightarrow {MB} } \right| = \left| {\overrightarrow {{F_2}} } \right| = 25\) N.

Do \(\widehat {AMB} = 60^\circ \) nên DMAB là tam giác đều. Khi đó \(MD = 2.\frac{{25\sqrt 3 }}{2} = 25\sqrt 3 \).

Do ô tô đứng yên nên \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow 0 \).

Suy ra \(\overrightarrow {{F_3}} = - \left( {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} } \right)\)\( \Rightarrow \left| {\overrightarrow {{F_3}} } \right| = \left| { - \left( {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} } \right)} \right| = \left| {\overrightarrow {DM} } \right| = MD = 25\sqrt 3 \) N.

Vậy cường độ của \(\overrightarrow {{F_3}} \)\(25\sqrt 3 \approx 43,3\) N.

Trả lời: 43,3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ảnh có chứa hàng, hình tam giác

Nội dung do AI tạo ra có thể không chính xác.

a) Hai vectơ \(\overrightarrow {AD} \)\(\overrightarrow {CB} \) là hai vectơ ngược hướng nên góc giữa chúng bằng 180°.

b) Hai vectơ \(\overrightarrow {BD} \)\(\overrightarrow {BO} \) là hai vectơ cùng hướng nên góc giữa chúng là \(0^\circ \).

c) Ta có \(\left( {\overrightarrow {BA} ,\overrightarrow {CS} } \right) = \left( {\overrightarrow {CD} ,\overrightarrow {CS} } \right) = \widehat {SCD}\).

Áp dụng định lí côsin cho tam giác SCD có:

\(\cos \widehat {SCD} = \frac{{S{C^2} + C{D^2} - S{D^2}}}{{2SC.CD}} = \frac{{{{\left( {2a} \right)}^2} + {a^2} - {{\left( {2a} \right)}^2}}}{{2.2a.a}} = \frac{1}{4}\).

d) Ta có \(\overrightarrow {AO} .\overrightarrow {SD} = - \overrightarrow {OA} .\left( {\overrightarrow {OD} - \overrightarrow {OS} } \right) = - \overrightarrow {OA} .\overrightarrow {OD} + \overrightarrow {OA} .\overrightarrow {OS} = 0\) nên góc giữa hai vectơ \(\overrightarrow {AO} \)\(\overrightarrow {SD} \) bằng 90°.

Đáp án: a) Sai;   b) Sai;   c) Đúng;    d) Sai.

Lời giải

Ảnh có chứa hàng, hình tam giác

Nội dung do AI tạo ra có thể không chính xác.

Từ giả thiết ta có \(\overrightarrow {AB} .\overrightarrow {AC} = \overrightarrow {AB} .\overrightarrow {BD} = 0\).

I là trung điểm của AB nên \(\overrightarrow {IA} + \overrightarrow {IB} = \overrightarrow 0 \).

J là trung điểm của CD nên \(\overrightarrow {CJ} + \overrightarrow {DJ} = \overrightarrow 0 \).

Lại có \(\overrightarrow {IJ} = \overrightarrow {IA} + \overrightarrow {AC} + \overrightarrow {CJ} ;\overrightarrow {IJ} = \overrightarrow {IB} + \overrightarrow {BD} + \overrightarrow {DJ} \).

Suy ra \(2\overrightarrow {IJ} = \overrightarrow {AC} + \overrightarrow {BD} \Rightarrow \overrightarrow {IJ} = \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {BD} } \right)\).

Do đó \(\overrightarrow {IJ} .\overrightarrow {AB} = \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {BD} } \right).\overrightarrow {AB} = \frac{1}{2}\overrightarrow {AC} .\overrightarrow {AB} + \frac{1}{2}\overrightarrow {BD} .\overrightarrow {AB} = 0\).

Suy ra \(\overrightarrow {IJ} \bot \overrightarrow {AB} \) hay \(IJ \bot AB\).

Câu 3

A. \[\overrightarrow {IJ} \, = \,\frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {BD} } \right)\]. 

B. \[\overrightarrow {IJ} \, = \,\frac{1}{2}\left( {\overrightarrow {AD} + \overrightarrow {BC} } \right)\].

C. \[\overrightarrow {IJ} \, = \,\frac{1}{2}\left( {\overrightarrow {DC} + \overrightarrow {AD} + \overrightarrow {BD} } \right)\].                        
D. \[\overrightarrow {IJ} \, = \,\frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {CD} } \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\overrightarrow {BC} - \overrightarrow {{B_1}{C_1}} = \overrightarrow {{B_1}{A_1}} - \overrightarrow {BA} \).   

B. \(\overrightarrow {AD} + \overrightarrow {{D_1}{C_1}} + \overrightarrow {{D_1}{A_1}} = \overrightarrow {DC} \).

C. \(\overrightarrow {BC} + \overrightarrow {BA} + \overrightarrow {B{B_1}} = \overrightarrow {B{D_1}} \).              
D. \(\overrightarrow {BA} + \overrightarrow {D{D_1}} + \overrightarrow {B{D_1}} = \overrightarrow {BC} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP