. Cho ba lực \(\overrightarrow {{F_1}} = \overrightarrow {MA} ,\overrightarrow {{F_2}} = \overrightarrow {MB} ,\overrightarrow {{F_3}} = \overrightarrow {MC} \) cùng tác động vào một ô tô tại điểm M và ô tô đứng yên. Cho biết cường độ hai lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) đều bằng 25N và \(\widehat {AMB} = 60^\circ \). Tính cường độ lực \(\overrightarrow {{F_3}} \)(kết quả làm tròn đến hàng phần mười).

. Cho ba lực \(\overrightarrow {{F_1}} = \overrightarrow {MA} ,\overrightarrow {{F_2}} = \overrightarrow {MB} ,\overrightarrow {{F_3}} = \overrightarrow {MC} \) cùng tác động vào một ô tô tại điểm M và ô tô đứng yên. Cho biết cường độ hai lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) đều bằng 25N và \(\widehat {AMB} = 60^\circ \). Tính cường độ lực \(\overrightarrow {{F_3}} \)(kết quả làm tròn đến hàng phần mười).

Quảng cáo
Trả lời:
Ta có \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} = \overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow {MD} \) (với D là điểm sao cho AMBD là hình bình hành).
Ta có \(MA = \left| {\overrightarrow {MA} } \right| = \left| {\overrightarrow {{F_1}} } \right| = 25\) N; \(MB = \left| {\overrightarrow {MB} } \right| = \left| {\overrightarrow {{F_2}} } \right| = 25\) N.
Do \(\widehat {AMB} = 60^\circ \) nên DMAB là tam giác đều. Khi đó \(MD = 2.\frac{{25\sqrt 3 }}{2} = 25\sqrt 3 \).
Do ô tô đứng yên nên \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow 0 \).
Suy ra \(\overrightarrow {{F_3}} = - \left( {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} } \right)\)\( \Rightarrow \left| {\overrightarrow {{F_3}} } \right| = \left| { - \left( {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} } \right)} \right| = \left| {\overrightarrow {DM} } \right| = MD = 25\sqrt 3 \) N.
Vậy cường độ của \(\overrightarrow {{F_3}} \) là \(25\sqrt 3 \approx 43,3\) N.
Trả lời: 43,3.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Hai vectơ \(\overrightarrow {AD} \) và \(\overrightarrow {CB} \) là hai vectơ ngược hướng nên góc giữa chúng bằng 180°.
b) Hai vectơ \(\overrightarrow {BD} \) và \(\overrightarrow {BO} \) là hai vectơ cùng hướng nên góc giữa chúng là \(0^\circ \).
c) Ta có \(\left( {\overrightarrow {BA} ,\overrightarrow {CS} } \right) = \left( {\overrightarrow {CD} ,\overrightarrow {CS} } \right) = \widehat {SCD}\).
Áp dụng định lí côsin cho tam giác SCD có:
\(\cos \widehat {SCD} = \frac{{S{C^2} + C{D^2} - S{D^2}}}{{2SC.CD}} = \frac{{{{\left( {2a} \right)}^2} + {a^2} - {{\left( {2a} \right)}^2}}}{{2.2a.a}} = \frac{1}{4}\).
d) Ta có \(\overrightarrow {AO} .\overrightarrow {SD} = - \overrightarrow {OA} .\left( {\overrightarrow {OD} - \overrightarrow {OS} } \right) = - \overrightarrow {OA} .\overrightarrow {OD} + \overrightarrow {OA} .\overrightarrow {OS} = 0\) nên góc giữa hai vectơ \(\overrightarrow {AO} \) và \(\overrightarrow {SD} \) bằng 90°.
Đáp án: a) Sai; b) Sai; c) Đúng; d) Sai.
Câu 2
A. \[\overrightarrow {IJ} \, = \,\frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {BD} } \right)\].
B. \[\overrightarrow {IJ} \, = \,\frac{1}{2}\left( {\overrightarrow {AD} + \overrightarrow {BC} } \right)\].
Lời giải
Ta có: \(\overrightarrow {IJ} \, = \,\,\overrightarrow {IA} + \,\overrightarrow {AJ} \)\( = \, - \frac{1}{2}\overrightarrow {AB} \, + \frac{1}{2}\left( {\overrightarrow {AC} \, + \,\overrightarrow {AD} } \right)\) \( = \,\frac{1}{2}\left( {\overrightarrow {BC} + \,\overrightarrow {AD} } \right)\)
\( = \,\frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {BD} + \overrightarrow {CD} + \overrightarrow {DC} + \overrightarrow {BC} } \right)\) \( = \,\frac{1}{2}\left( {\overrightarrow {DC} + \overrightarrow {BD} + \overrightarrow {AD} } \right)\).
Vậy đẳng thức sai là \[\overrightarrow {IJ} \, = \,\frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {CD} } \right)\]. Chọn D.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\overrightarrow {BC} - \overrightarrow {{B_1}{C_1}} = \overrightarrow {{B_1}{A_1}} - \overrightarrow {BA} \).
B. \(\overrightarrow {AD} + \overrightarrow {{D_1}{C_1}} + \overrightarrow {{D_1}{A_1}} = \overrightarrow {DC} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
