Cho góc \(\alpha \) thỏa mãn \( - \frac{\pi }{2} < \alpha < 0\) và \(\cos \alpha = \frac{1}{2}\). Giá trị của biểu thức \(P = \sin \alpha + \frac{1}{{\cos \alpha }}\) bằng
Quảng cáo
Trả lời:

Có \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Leftrightarrow {\sin ^2}\alpha + {\left( {\frac{1}{2}} \right)^2} = 1\)\( \Leftrightarrow {\sin ^2}\alpha = \frac{3}{4}\).
Vì \( - \frac{\pi }{2} < \alpha < 0\) nên \(\sin \alpha < 0\). Do đó \(\sin \alpha = - \frac{{\sqrt 3 }}{2}\).
Do đó \(P = \sin \alpha + \frac{1}{{\cos \alpha }}\)\( = - \frac{{\sqrt 3 }}{2} + \frac{1}{{\frac{1}{2}}} = - \frac{{\sqrt 3 }}{2} + 2 = \frac{{4 - \sqrt 3 }}{2}\). Chọn B.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có . Chọn B.
Lời giải
\(A = \cos \left( {\alpha - \frac{\pi }{2}} \right) + \sin \left( {\alpha - \pi } \right) + \tan \left( {\pi + \alpha } \right)\)
\( = \sin \alpha - \sin \alpha + \tan \alpha \) \( = \tan \alpha = \frac{1}{{\cot \alpha }} = - 0,5\).
Trả lời: −0,5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.