Tính \(L = \tan 20^\circ .\tan 45^\circ .\tan 70^\circ \)
Quảng cáo
Trả lời:

Ta có . Chọn B.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Ta có \(\frac{1}{{{{\cos }^2}x}} = 1 + {\tan ^2}x = 1 + \frac{9}{{16}} = \frac{{25}}{{16}} \Rightarrow {\cos ^2}x = \frac{{16}}{{25}}\).
Vì \({\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x = 1 - \frac{{16}}{{25}} = \frac{9}{{25}}\). Chọn B.
Lời giải
a) Số đo của góc lượng giác có tia đầu là OA, tia cuối là OM bằng \[\frac{\pi }{3} + k2\pi \left( {k \in \mathbb{Z}} \right)\].
b) Ta có \(\frac{{16\pi }}{3} = \frac{{4\pi }}{3} + 2.2\pi \). Suy ra góc lượng giác có số đo \(\frac{{16\pi }}{3}\) có cùng tia đầu và tia cuối với góc lượng giác có số đo là \(\frac{{4\pi }}{3} + k2\pi ,k \in \mathbb{Z}\).
c) Ta có \(\frac{\pi }{3} + k\frac{\pi }{2} = \frac{\pi }{3} + k\frac{{2\pi }}{4},k \in \mathbb{Z}\) nên khi biểu diễn trên đường tròn lượng giác ta được 4 điểm.
d) Tập hợp các điểm biểu diễn của α là tam giác đều có cạnh bằng \(MN = 2\sin \frac{\pi }{3} = \sqrt 3 \).

Diện tích của đa giác biểu diễn là \(S = \frac{{3\sqrt 3 }}{4}\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Sai.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.