Câu hỏi:

14/09/2025 48 Lưu

Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất của phương trình \(\sin \left( {3x - \frac{{3\pi }}{4}} \right) = \frac{{\sqrt 3 }}{2}\).

A. \(\frac{\pi }{9}\).          
B. \( - \frac{\pi }{6}\).                 
C. \(\frac{\pi }{6}\).                                               
D. \( - \frac{\pi }{9}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(\sin \left( {3x - \frac{{3\pi }}{4}} \right) = \frac{{\sqrt 3 }}{2}\)\( \Leftrightarrow \left[ \begin{array}{l}3x - \frac{{3\pi }}{4} = \frac{\pi }{3} + k2\pi \\3x - \frac{{3\pi }}{4} = \pi - \frac{\pi }{3} + k2\pi \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}3x = \frac{{13\pi }}{{12}} + k2\pi \\3x = \frac{{17\pi }}{{12}} + k2\pi \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{13\pi }}{{36}} + k\frac{{2\pi }}{3}\\x = \frac{{17\pi }}{{36}} + k\frac{{2\pi }}{3}\end{array} \right.,k \in \mathbb{Z}\).

TH1: \(x = \frac{{13\pi }}{{36}} + k\frac{{2\pi }}{3}\)

Với \(x > 0\) thì \(k > \frac{{ - 13}}{{24}},k \in \mathbb{Z}\). Suy ra kmin = 0. Do đó \(x = \frac{{13\pi }}{{36}}\).

Với \(x < 0\)thì \(k < \frac{{ - 13}}{{24}},k \in \mathbb{Z}\). Suy ra kmax = −1. Do đó \(x = \frac{{ - 11\pi }}{{36}}\).

TH2: \(x = \frac{{17\pi }}{{36}} + k\frac{{2\pi }}{3}\)

Với \(x > 0\) thì \(k > \frac{{ - 17}}{{24}},k \in \mathbb{Z}\). Suy ra kmin = 0. Do đó \(x = \frac{{17\pi }}{{36}}\).

Với \(x < 0\) thì \(k < \frac{{ - 17}}{{24}},k \in \mathbb{Z}\). Suy ra kmax = −1. Do đó \(x = - \frac{{7\pi }}{{36}}\).

So sánh bốn nghiệm ta được nghiệm âm lớn nhất là \(x = - \frac{{7\pi }}{{36}}\) và nghiệm dương nhỏ nhất là \(x = \frac{{13\pi }}{{36}}.\)

Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất là: \( - \frac{{7\pi }}{{36}} + \frac{{13\pi }}{{36}} = \frac{\pi }{6}\). Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(h = 12\)\( \Leftrightarrow 15 + 3\cos \left( {\frac{\pi }{{12}}t} \right) = 12\)\( \Leftrightarrow \cos \left( {\frac{\pi }{{12}}t} \right) = - 1\)\( \Leftrightarrow \frac{\pi }{{12}}t = \pi + k2\pi \)\( \Leftrightarrow t = 12 + k24\).

\(0 \le t < 24\) nên k = 0.

Với k = 0 thì t = 12.

Vậy vào lúc 12 giờ thì chiều cao mực nước biển là 12 m.

Trả lời: 12.

Lời giải

\(s = 4,3 \Leftrightarrow 8,6\sin \left( {8t + \frac{\pi }{2}} \right) = 4,3\)\( \Leftrightarrow \sin \left( {8t + \frac{\pi }{2}} \right) = \frac{1}{2}\)\( \Leftrightarrow 8t + \frac{\pi }{2} = \frac{\pi }{6} + k2\pi \)\( \Leftrightarrow t = - \frac{\pi }{{24}} + k\frac{\pi }{4}\).

\(t \in \left[ {0;2} \right]\) nên \(0 \le - \frac{\pi }{{24}} + k\frac{\pi }{4} \le 2\)\( \Leftrightarrow \frac{1}{6} \le k \le \frac{8}{\pi } + \frac{1}{6}\).

\(k \in \mathbb{Z}\) nên k = 1; k = 2.

Vậy có 2 thời điểm.

Trả lời: 2.

Câu 5

A. \(x = \frac{\pi }{3} + k\pi ,\,\,k \in \mathbb{Z}\).                                                             
B. \(x = - \frac{\pi }{6} + k2\pi ,\,\,k \in \mathbb{Z}\).                          
C. \(x = \frac{\pi }{3} + k2\pi ,\,\,k \in \mathbb{Z}\).                                                             
D. \(x = \frac{{5\pi }}{6} + k2\pi ,\,\,k \in \mathbb{Z}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \( - \frac{\pi }{3}\).      
B. \(0\).                             
C. \(\frac{\pi }{4}\).                                               
D. \(\frac{{2\pi }}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP