Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất của phương trình \(\sin \left( {3x - \frac{{3\pi }}{4}} \right) = \frac{{\sqrt 3 }}{2}\).
Quảng cáo
Trả lời:

\(\sin \left( {3x - \frac{{3\pi }}{4}} \right) = \frac{{\sqrt 3 }}{2}\)\( \Leftrightarrow \left[ \begin{array}{l}3x - \frac{{3\pi }}{4} = \frac{\pi }{3} + k2\pi \\3x - \frac{{3\pi }}{4} = \pi - \frac{\pi }{3} + k2\pi \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}3x = \frac{{13\pi }}{{12}} + k2\pi \\3x = \frac{{17\pi }}{{12}} + k2\pi \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{13\pi }}{{36}} + k\frac{{2\pi }}{3}\\x = \frac{{17\pi }}{{36}} + k\frac{{2\pi }}{3}\end{array} \right.,k \in \mathbb{Z}\).
TH1: \(x = \frac{{13\pi }}{{36}} + k\frac{{2\pi }}{3}\)
Với \(x > 0\) thì \(k > \frac{{ - 13}}{{24}},k \in \mathbb{Z}\). Suy ra kmin = 0. Do đó \(x = \frac{{13\pi }}{{36}}\).
Với \(x < 0\)thì \(k < \frac{{ - 13}}{{24}},k \in \mathbb{Z}\). Suy ra kmax = −1. Do đó \(x = \frac{{ - 11\pi }}{{36}}\).
TH2: \(x = \frac{{17\pi }}{{36}} + k\frac{{2\pi }}{3}\)
Với \(x > 0\) thì \(k > \frac{{ - 17}}{{24}},k \in \mathbb{Z}\). Suy ra kmin = 0. Do đó \(x = \frac{{17\pi }}{{36}}\).
Với \(x < 0\) thì \(k < \frac{{ - 17}}{{24}},k \in \mathbb{Z}\). Suy ra kmax = −1. Do đó \(x = - \frac{{7\pi }}{{36}}\).
So sánh bốn nghiệm ta được nghiệm âm lớn nhất là \(x = - \frac{{7\pi }}{{36}}\) và nghiệm dương nhỏ nhất là \(x = \frac{{13\pi }}{{36}}.\)
Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất là: \( - \frac{{7\pi }}{{36}} + \frac{{13\pi }}{{36}} = \frac{\pi }{6}\). Chọn C.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Có \(h = 12\)\( \Leftrightarrow 15 + 3\cos \left( {\frac{\pi }{{12}}t} \right) = 12\)\( \Leftrightarrow \cos \left( {\frac{\pi }{{12}}t} \right) = - 1\)\( \Leftrightarrow \frac{\pi }{{12}}t = \pi + k2\pi \)\( \Leftrightarrow t = 12 + k24\).
Vì \(0 \le t < 24\) nên k = 0.
Với k = 0 thì t = 12.
Vậy vào lúc 12 giờ thì chiều cao mực nước biển là 12 m.
Trả lời: 12.
Lời giải
Có \(s = 4,3 \Leftrightarrow 8,6\sin \left( {8t + \frac{\pi }{2}} \right) = 4,3\)\( \Leftrightarrow \sin \left( {8t + \frac{\pi }{2}} \right) = \frac{1}{2}\)\( \Leftrightarrow 8t + \frac{\pi }{2} = \frac{\pi }{6} + k2\pi \)\( \Leftrightarrow t = - \frac{\pi }{{24}} + k\frac{\pi }{4}\).
Vì \(t \in \left[ {0;2} \right]\) nên \(0 \le - \frac{\pi }{{24}} + k\frac{\pi }{4} \le 2\)\( \Leftrightarrow \frac{1}{6} \le k \le \frac{8}{\pi } + \frac{1}{6}\).
Mà \(k \in \mathbb{Z}\) nên k = 1; k = 2.
Vậy có 2 thời điểm.
Trả lời: 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.