Câu hỏi:

14/09/2025 38 Lưu

Phần II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, chọn đúng hoặc sai.

Cho hình chóp S.ABCD có đáy là hình thang, AD là đáy lớn và AD = 2BC. Gọi E là giao điểm của AB và CD, F là trung điểm AD.

a) Giao tuyến của (SAC) và (SAD) là đường thẳng SA.

b) Giao tuyến của (SAB) và (SCD) là đường thẳng SE.

c) Giao tuyến của (SAD) và (SBC) là đường thẳng d đi qua S và song song cạnh CD.

d) Giao tuyến của (SAB) và (SFC) là đường thẳng d' đi qua S và song song cạnh CD.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Giao tuyến của (SAC) và (SAD) là đường thẳng SA. (ảnh 1)

a) (SAC) Ç (SAD) = SA.

b) Có S Î (SAB) Ç (SCD).

Trong (ABCD), có E Î AB Ì (SAB), E Î CD Ì (SCD) Þ E Î (SAB) Ç (SCD).

Do đó (SAB) Ç (SCD) = SE.

c) S Î (SAD) Ç (SBC) mà AD // BC nên (SAD) Ç (SBC) = d với d đi qu S và song song AD.

d) Xét tứ giác ABCF, ta có BC // AF và \(BC = AF = \frac{{AD}}{2}\) Þ ABCF là hình bình hành.

Ta có S Î (SAB) Ç (SCF) mà AB // FC nên (SAB) Ç (SCF) = d' với d' đi qua S và song song AB.

Đáp án: a) Đúng;   b) Đúng; c) Sai;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(\left\{ \begin{array}{l}{u_5} = 19\\{u_9} = 35\end{array} \right.{\rm{ }}\left( 1 \right)\).

Áp dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\),

Ta có: \(\left( 1 \right) \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 4d = 19\\{u_1} + 8d = 35\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 3\\d = 4\end{array} \right.\).

Vậy số hạng đầu tiên \({u_1} = 3\), công sai \(d = 4\).

Số hạng thứ \(20\): \({u_{20}} = {u_1} + 19d = 3 + 19.4 = 79\).

Tổng của \(20\) số hạng đầu tiên: \({S_{20}} = \frac{{20\left( {2{u_1} + 19d} \right)}}{2} = 10\left( {2.3 + 19.4} \right) = 820\).

b) \(\left\{ \begin{array}{l}{u_3} + {u_5} = 14\\{s_{12}} = 129\end{array} \right.{\rm{ }}\left( 1 \right)\).

 Áp dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\), \({S_n} = \frac{{n\left[ {2{u_1} + (n - 1)d} \right]}}{2}\)

Ta có: \(\left( 1 \right) \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 2d + {u_1} + 4d = 14\\6\left( {2{u_1} + 11d} \right) = 129\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2{u_1} + 6d = 14\\12{u_1} + 66d = 129\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = \frac{5}{2}\\d = \frac{3}{2}.\end{array} \right.\)

Vậy số hạng đầu tiên \({u_1} = \frac{5}{2}\), công sai \(d = \frac{3}{2}\).

Số hạng thứ \(20\): \({u_{20}} = {u_1} + 19d = \frac{5}{2} + 19.\frac{3}{2} = 31\).

Tổng của \(20\) số hạng đầu tiên: \({S_{20}} = \frac{{20\left( {2{u_1} + 19d} \right)}}{2} = 10\left( {2.\frac{5}{2} + 19.\frac{3}{2}} \right) = 335\).

Lời giải

CCCCCC (ảnh 1)

Ta có NP // AB.

Ta có NP Ì (MNP), AB Ì (ABC), (ABC) và (MNP) có điểm M chung nên giao tuyến của (ABC) và (MNP) là đường thẳng MQ // AB (Q Î AC).

Ta có \(\frac{{QC}}{{QA}} = \frac{{MC}}{{MB}} = 3\).

Trả lời: 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. đường thẳng qua \(S\) và song song với \(AB\).
B. đường thẳng qua \(S\) và song song với \(AD\).
C. đường thẳng qua \(M\) và song song với \(CD\).
D. đường thẳng qua \(M\) và song song với \(AD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP