Câu hỏi:

14/09/2025 65 Lưu

Chứng minh dãy số \(\left( {{u_n}} \right)\), với \({u_n} = \frac{{7n + 5}}{{5n + 7}}\) là một dãy số tăng và bị chặn.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Công thức \({u_n}\) được viết lại: \({u_n} = \frac{7}{5} - \frac{{24}}{{5\left( {5n + 7} \right)}}\)

Xét hiệu số:\({u_{n + 1}} - {u_n} = \left( {\frac{7}{5} - \frac{{24}}{{5\left[ {5\left( {n + 1} \right) + 7} \right]}}} \right) - \left( {\frac{7}{5} - \frac{{24}}{{5\left( {5n + 7} \right)}}} \right)\)

=24515n+715n+1+7>0   n1 un+1>un

Vậy dãy số \(\left( {{u_n}} \right)\)là dãy số tăng.

Ta có: 0<15n+7112    n1 0>2455n+725 75>752455n+77525

\( \Leftrightarrow 1 \le {u_n} < \frac{7}{5}.\) Suy ra \(\left( {{u_n}} \right)\) là một dãy số bị chặn.

Kết luận \(\left( {{u_n}} \right)\) là một dãy số tăng và bị chặn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(\left\{ \begin{array}{l}{u_5} = 19\\{u_9} = 35\end{array} \right.{\rm{ }}\left( 1 \right)\).

Áp dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\),

Ta có: \(\left( 1 \right) \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 4d = 19\\{u_1} + 8d = 35\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 3\\d = 4\end{array} \right.\).

Vậy số hạng đầu tiên \({u_1} = 3\), công sai \(d = 4\).

Số hạng thứ \(20\): \({u_{20}} = {u_1} + 19d = 3 + 19.4 = 79\).

Tổng của \(20\) số hạng đầu tiên: \({S_{20}} = \frac{{20\left( {2{u_1} + 19d} \right)}}{2} = 10\left( {2.3 + 19.4} \right) = 820\).

b) \(\left\{ \begin{array}{l}{u_3} + {u_5} = 14\\{s_{12}} = 129\end{array} \right.{\rm{ }}\left( 1 \right)\).

 Áp dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\), \({S_n} = \frac{{n\left[ {2{u_1} + (n - 1)d} \right]}}{2}\)

Ta có: \(\left( 1 \right) \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 2d + {u_1} + 4d = 14\\6\left( {2{u_1} + 11d} \right) = 129\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2{u_1} + 6d = 14\\12{u_1} + 66d = 129\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = \frac{5}{2}\\d = \frac{3}{2}.\end{array} \right.\)

Vậy số hạng đầu tiên \({u_1} = \frac{5}{2}\), công sai \(d = \frac{3}{2}\).

Số hạng thứ \(20\): \({u_{20}} = {u_1} + 19d = \frac{5}{2} + 19.\frac{3}{2} = 31\).

Tổng của \(20\) số hạng đầu tiên: \({S_{20}} = \frac{{20\left( {2{u_1} + 19d} \right)}}{2} = 10\left( {2.\frac{5}{2} + 19.\frac{3}{2}} \right) = 335\).

Lời giải

CCCCCC (ảnh 1)

Ta có NP // AB.

Ta có NP Ì (MNP), AB Ì (ABC), (ABC) và (MNP) có điểm M chung nên giao tuyến của (ABC) và (MNP) là đường thẳng MQ // AB (Q Î AC).

Ta có \(\frac{{QC}}{{QA}} = \frac{{MC}}{{MB}} = 3\).

Trả lời: 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. đường thẳng qua \(S\) và song song với \(AB\).
B. đường thẳng qua \(S\) và song song với \(AD\).
C. đường thẳng qua \(M\) và song song với \(CD\).
D. đường thẳng qua \(M\) và song song với \(AD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP