Câu hỏi:

14/09/2025 171 Lưu

Chứng minh dãy số \(\left( {{u_n}} \right)\), với \({u_n} = \frac{{7n + 5}}{{5n + 7}}\) là một dãy số tăng và bị chặn.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Công thức \({u_n}\) được viết lại: \({u_n} = \frac{7}{5} - \frac{{24}}{{5\left( {5n + 7} \right)}}\)

Xét hiệu số:\({u_{n + 1}} - {u_n} = \left( {\frac{7}{5} - \frac{{24}}{{5\left[ {5\left( {n + 1} \right) + 7} \right]}}} \right) - \left( {\frac{7}{5} - \frac{{24}}{{5\left( {5n + 7} \right)}}} \right)\)

=24515n+715n+1+7>0   n1 un+1>un

Vậy dãy số \(\left( {{u_n}} \right)\)là dãy số tăng.

Ta có: 0<15n+7112    n1 0>2455n+725 75>752455n+77525

\( \Leftrightarrow 1 \le {u_n} < \frac{7}{5}.\) Suy ra \(\left( {{u_n}} \right)\) là một dãy số bị chặn.

Kết luận \(\left( {{u_n}} \right)\) là một dãy số tăng và bị chặn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(\left\{ \begin{array}{l}{u_5} = 19\\{u_9} = 35\end{array} \right.{\rm{ }}\left( 1 \right)\).

Áp dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\),

Ta có: \(\left( 1 \right) \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 4d = 19\\{u_1} + 8d = 35\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 3\\d = 4\end{array} \right.\).

Vậy số hạng đầu tiên \({u_1} = 3\), công sai \(d = 4\).

Số hạng thứ \(20\): \({u_{20}} = {u_1} + 19d = 3 + 19.4 = 79\).

Tổng của \(20\) số hạng đầu tiên: \({S_{20}} = \frac{{20\left( {2{u_1} + 19d} \right)}}{2} = 10\left( {2.3 + 19.4} \right) = 820\).

b) \(\left\{ \begin{array}{l}{u_3} + {u_5} = 14\\{s_{12}} = 129\end{array} \right.{\rm{ }}\left( 1 \right)\).

 Áp dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\), \({S_n} = \frac{{n\left[ {2{u_1} + (n - 1)d} \right]}}{2}\)

Ta có: \(\left( 1 \right) \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 2d + {u_1} + 4d = 14\\6\left( {2{u_1} + 11d} \right) = 129\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2{u_1} + 6d = 14\\12{u_1} + 66d = 129\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = \frac{5}{2}\\d = \frac{3}{2}.\end{array} \right.\)

Vậy số hạng đầu tiên \({u_1} = \frac{5}{2}\), công sai \(d = \frac{3}{2}\).

Số hạng thứ \(20\): \({u_{20}} = {u_1} + 19d = \frac{5}{2} + 19.\frac{3}{2} = 31\).

Tổng của \(20\) số hạng đầu tiên: \({S_{20}} = \frac{{20\left( {2{u_1} + 19d} \right)}}{2} = 10\left( {2.\frac{5}{2} + 19.\frac{3}{2}} \right) = 335\).

Lời giải

a) Ta có \(\left\{ \begin{array}{l}{u_1} + {u_5} = 51\\{u_2} + {u_6} = 102\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + {u_1}{q^4} = 51\\{u_1}q + {u_1}{q^5} = 102\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}(1 + {q^4}) = 51{\rm{   }}\\{u_1}q(1 + {q^4}) = 102\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}(1 + {q^4}) = 51{\rm{   }}\\q.51 = 102\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 3\\q = 2\end{array} \right.\).

b) Có \({S_n} = 3069 \Leftrightarrow {u_1}.\frac{{1 - {q^n}}}{{1 - q}} = 3069 \Leftrightarrow 3.\frac{{1 - {2^n}}}{{1 - 2}} = 3069 \Leftrightarrow {2^n} = 1024 \Rightarrow n = 10\).

Kết luận tổng của 10 số hạng đầu tiên bằng 3069.

c) Có \({u_k} = 12288 \Leftrightarrow {u_1}.{q^{k - 1}} = 12288 \Leftrightarrow {3.2^{k - 1}} = 12288 \Leftrightarrow {2^{k - 1}} = 4096 = {2^{12}}\)

\( \Rightarrow k - 1 = 12 \Leftrightarrow k = 13\).

Kết luận số 12288 là số hạng thứ 13.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP