Câu hỏi:

15/09/2025 82 Lưu

Xác định tiệm cận đứng và tiệm cận ngang của đồ thị các hàm số sau

a) \(y = \frac{{2x - 1}}{{x + 1}}\);

b) \(y = \frac{{{x^2} - 5x + 4}}{{{x^2} - 1}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta có \(\mathop {\lim }\limits_{x \to \pm \infty } \frac{{2x - 1}}{{x + 1}} = 2\) nên đường thẳng \(y = 2\) là tiệm cận ngang của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to - {1^ + }} \frac{{2x - 1}}{{x + 1}} = - \infty \); \(\mathop {\lim }\limits_{x \to - {1^ - }} \frac{{2x - 1}}{{x + 1}} = + \infty \) nên \(x = - 1\) là tiệm cận đứng của đồ thị hàm số.

b) \(\mathop {\lim }\limits_{x \to \pm \infty } \frac{{{x^2} - 5x + 4}}{{{x^2} - 1}} = 1\). Suy ra \(y = 1\) là tiệm cận ngang của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \frac{{{x^2} - 5x + 4}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \frac{{\left( {x - 1} \right)\left( {x - 4} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \frac{{x - 4}}{{x + 1}} = + \infty \);

\(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \frac{{{x^2} - 5x + 4}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \frac{{\left( {x - 1} \right)\left( {x - 4} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \frac{{x - 4}}{{x + 1}} = - \infty \);

\(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 5x + 4}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {x - 4} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{x - 4}}{{x + 1}} = - \frac{3}{2}\).

Suy ra \(x = - 1\) là tiệm cận đứng của đồ thị hàm số.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ảnh có chứa hàng, hình tam giác

Nội dung do AI tạo ra có thể không chính xác.

a) Hai vectơ \(\overrightarrow {AD} \)\(\overrightarrow {CB} \) là hai vectơ ngược hướng nên góc giữa chúng bằng 180°.

b) Hai vectơ \(\overrightarrow {BD} \)\(\overrightarrow {BO} \) là hai vectơ cùng hướng nên góc giữa chúng là \(0^\circ \).

c) Ta có \(\left( {\overrightarrow {BA} ,\overrightarrow {CS} } \right) = \left( {\overrightarrow {CD} ,\overrightarrow {CS} } \right) = \widehat {SCD}\).

Áp dụng định lí côsin cho tam giác SCD có:

\(\cos \widehat {SCD} = \frac{{S{C^2} + C{D^2} - S{D^2}}}{{2SC.CD}} = \frac{{{{\left( {2a} \right)}^2} + {a^2} - {{\left( {2a} \right)}^2}}}{{2.2a.a}} = \frac{1}{4}\).

d) Ta có \(\overrightarrow {AO} .\overrightarrow {SD} = - \overrightarrow {OA} .\left( {\overrightarrow {OD} - \overrightarrow {OS} } \right) = - \overrightarrow {OA} .\overrightarrow {OD} + \overrightarrow {OA} .\overrightarrow {OS} = 0\) nên góc giữa hai vectơ \(\overrightarrow {AO} \)\(\overrightarrow {SD} \) bằng 90°.

Đáp án: a) Sai;   b) Sai;   c) Đúng;    d) Sai.

Lời giải

Ảnh có chứa hàng, hình tam giác

Nội dung do AI tạo ra có thể không chính xác.

Từ giả thiết ta có \(\overrightarrow {AB} .\overrightarrow {AC} = \overrightarrow {AB} .\overrightarrow {BD} = 0\).

I là trung điểm của AB nên \(\overrightarrow {IA} + \overrightarrow {IB} = \overrightarrow 0 \).

J là trung điểm của CD nên \(\overrightarrow {CJ} + \overrightarrow {DJ} = \overrightarrow 0 \).

Lại có \(\overrightarrow {IJ} = \overrightarrow {IA} + \overrightarrow {AC} + \overrightarrow {CJ} ;\overrightarrow {IJ} = \overrightarrow {IB} + \overrightarrow {BD} + \overrightarrow {DJ} \).

Suy ra \(2\overrightarrow {IJ} = \overrightarrow {AC} + \overrightarrow {BD} \Rightarrow \overrightarrow {IJ} = \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {BD} } \right)\).

Do đó \(\overrightarrow {IJ} .\overrightarrow {AB} = \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {BD} } \right).\overrightarrow {AB} = \frac{1}{2}\overrightarrow {AC} .\overrightarrow {AB} + \frac{1}{2}\overrightarrow {BD} .\overrightarrow {AB} = 0\).

Suy ra \(\overrightarrow {IJ} \bot \overrightarrow {AB} \) hay \(IJ \bot AB\).

Câu 3

A. \[\overrightarrow {IJ} \, = \,\frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {BD} } \right)\]. 

B. \[\overrightarrow {IJ} \, = \,\frac{1}{2}\left( {\overrightarrow {AD} + \overrightarrow {BC} } \right)\].

C. \[\overrightarrow {IJ} \, = \,\frac{1}{2}\left( {\overrightarrow {DC} + \overrightarrow {AD} + \overrightarrow {BD} } \right)\].                        
D. \[\overrightarrow {IJ} \, = \,\frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {CD} } \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\overrightarrow {BC} - \overrightarrow {{B_1}{C_1}} = \overrightarrow {{B_1}{A_1}} - \overrightarrow {BA} \).   

B. \(\overrightarrow {AD} + \overrightarrow {{D_1}{C_1}} + \overrightarrow {{D_1}{A_1}} = \overrightarrow {DC} \).

C. \(\overrightarrow {BC} + \overrightarrow {BA} + \overrightarrow {B{B_1}} = \overrightarrow {B{D_1}} \).              
D. \(\overrightarrow {BA} + \overrightarrow {D{D_1}} + \overrightarrow {B{D_1}} = \overrightarrow {BC} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP