Câu hỏi:

15/09/2025 7 Lưu

Xác định tiệm cận đứng và tiệm cận xiên của đồ thị các hàm số sau

a) \(y = \frac{{{x^2} + 2}}{{2x - 4}}\);                  
b) \(y = \frac{{2{x^2} + 9x + 11}}{{2x + 5}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Có \[\mathop {\lim }\limits_{x \to {2^ - }} \frac{{{x^2} + 2}}{{2x - 4}} = - \infty ;\mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2} + 2}}{{2x - 4}} = + \infty \].

Suy ra đường thẳng \(x = 2\) là một tiệm cận đứng của đồ thị hàm số.

\(y = \frac{{{x^2} + 2}}{{2x - 4}} = \left( {\frac{1}{2}x + 1} \right) + \frac{6}{{2x - 4}}\)

\(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {\frac{1}{2}x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{6}{{2x - 4}} = 0\); \(\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {\frac{1}{2}x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \frac{6}{{2x - 4}} = 0\).

Do đó \(y = \frac{1}{2}x + 1\) là tiệm cận xiên của đồ thị hàm số.

b) \(\mathop {\lim }\limits_{x \to {{\left( { - \frac{5}{2}} \right)}^ - }} \frac{{2{x^2} + 9x + 11}}{{2x + 5}} = - \infty \); \(\mathop {\lim }\limits_{x \to {{\left( { - \frac{5}{2}} \right)}^ + }} \frac{{2{x^2} + 9x + 11}}{{2x + 5}} = + \infty \).

Suy ra \(x = - \frac{5}{2}\) là một tiệm cận đứng của đồ thị hàm số.

\(y = \frac{{2{x^2} + 9x + 11}}{{2x + 5}} = x + 2 + \frac{1}{{2x + 5}}\).

\(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {x + 2} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{2x + 5}} = 0\); \(\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {x + 2} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \frac{1}{{2x + 5}} = 0\).

Suy ra \(y = x + 2\) là tiệm cận xiên của đồ thị hàm số.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ảnh có chứa hàng, hình tam giác

Nội dung do AI tạo ra có thể không chính xác.

a) Hai vectơ \(\overrightarrow {AD} \)\(\overrightarrow {CB} \) là hai vectơ ngược hướng nên góc giữa chúng bằng 180°.

b) Hai vectơ \(\overrightarrow {BD} \)\(\overrightarrow {BO} \) là hai vectơ cùng hướng nên góc giữa chúng là \(0^\circ \).

c) Ta có \(\left( {\overrightarrow {BA} ,\overrightarrow {CS} } \right) = \left( {\overrightarrow {CD} ,\overrightarrow {CS} } \right) = \widehat {SCD}\).

Áp dụng định lí côsin cho tam giác SCD có:

\(\cos \widehat {SCD} = \frac{{S{C^2} + C{D^2} - S{D^2}}}{{2SC.CD}} = \frac{{{{\left( {2a} \right)}^2} + {a^2} - {{\left( {2a} \right)}^2}}}{{2.2a.a}} = \frac{1}{4}\).

d) Ta có \(\overrightarrow {AO} .\overrightarrow {SD} = - \overrightarrow {OA} .\left( {\overrightarrow {OD} - \overrightarrow {OS} } \right) = - \overrightarrow {OA} .\overrightarrow {OD} + \overrightarrow {OA} .\overrightarrow {OS} = 0\) nên góc giữa hai vectơ \(\overrightarrow {AO} \)\(\overrightarrow {SD} \) bằng 90°.

Đáp án: a) Sai;   b) Sai;   c) Đúng;    d) Sai.

Câu 2

Lời giải

Ta có: \(\overrightarrow {IJ} \, = \,\,\overrightarrow {IA} + \,\overrightarrow {AJ} \)\( = \, - \frac{1}{2}\overrightarrow {AB} \, + \frac{1}{2}\left( {\overrightarrow {AC} \, + \,\overrightarrow {AD} } \right)\) \( = \,\frac{1}{2}\left( {\overrightarrow {BC} + \,\overrightarrow {AD} } \right)\)

\( = \,\frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {BD} + \overrightarrow {CD} + \overrightarrow {DC} + \overrightarrow {BC} } \right)\) \( = \,\frac{1}{2}\left( {\overrightarrow {DC} + \overrightarrow {BD} + \overrightarrow {AD} } \right)\).

Vậy đẳng thức sai\[\overrightarrow {IJ} \, = \,\frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {CD} } \right)\]. Chọn D.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP