Xác định tiệm cận đứng và tiệm cận xiên của đồ thị các hàm số sau
a) \(y = \frac{{{x^2} + 2}}{{2x - 4}}\);
b) \(y = \frac{{2{x^2} + 9x + 11}}{{2x + 5}}\).
Xác định tiệm cận đứng và tiệm cận xiên của đồ thị các hàm số sau
a) \(y = \frac{{{x^2} + 2}}{{2x - 4}}\);Quảng cáo
Trả lời:

a) Có \[\mathop {\lim }\limits_{x \to {2^ - }} \frac{{{x^2} + 2}}{{2x - 4}} = - \infty ;\mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2} + 2}}{{2x - 4}} = + \infty \].
Suy ra đường thẳng \(x = 2\) là một tiệm cận đứng của đồ thị hàm số.
\(y = \frac{{{x^2} + 2}}{{2x - 4}} = \left( {\frac{1}{2}x + 1} \right) + \frac{6}{{2x - 4}}\)
Có \(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {\frac{1}{2}x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{6}{{2x - 4}} = 0\); \(\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {\frac{1}{2}x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \frac{6}{{2x - 4}} = 0\).
Do đó \(y = \frac{1}{2}x + 1\) là tiệm cận xiên của đồ thị hàm số.
b) \(\mathop {\lim }\limits_{x \to {{\left( { - \frac{5}{2}} \right)}^ - }} \frac{{2{x^2} + 9x + 11}}{{2x + 5}} = - \infty \); \(\mathop {\lim }\limits_{x \to {{\left( { - \frac{5}{2}} \right)}^ + }} \frac{{2{x^2} + 9x + 11}}{{2x + 5}} = + \infty \).
Suy ra \(x = - \frac{5}{2}\) là một tiệm cận đứng của đồ thị hàm số.
\(y = \frac{{2{x^2} + 9x + 11}}{{2x + 5}} = x + 2 + \frac{1}{{2x + 5}}\).
Có \(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {x + 2} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{2x + 5}} = 0\); \(\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {x + 2} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \frac{1}{{2x + 5}} = 0\).
Suy ra \(y = x + 2\) là tiệm cận xiên của đồ thị hàm số.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Hai vectơ \(\overrightarrow {AD} \) và \(\overrightarrow {CB} \) là hai vectơ ngược hướng nên góc giữa chúng bằng 180°.
b) Hai vectơ \(\overrightarrow {BD} \) và \(\overrightarrow {BO} \) là hai vectơ cùng hướng nên góc giữa chúng là \(0^\circ \).
c) Ta có \(\left( {\overrightarrow {BA} ,\overrightarrow {CS} } \right) = \left( {\overrightarrow {CD} ,\overrightarrow {CS} } \right) = \widehat {SCD}\).
Áp dụng định lí côsin cho tam giác SCD có:
\(\cos \widehat {SCD} = \frac{{S{C^2} + C{D^2} - S{D^2}}}{{2SC.CD}} = \frac{{{{\left( {2a} \right)}^2} + {a^2} - {{\left( {2a} \right)}^2}}}{{2.2a.a}} = \frac{1}{4}\).
d) Ta có \(\overrightarrow {AO} .\overrightarrow {SD} = - \overrightarrow {OA} .\left( {\overrightarrow {OD} - \overrightarrow {OS} } \right) = - \overrightarrow {OA} .\overrightarrow {OD} + \overrightarrow {OA} .\overrightarrow {OS} = 0\) nên góc giữa hai vectơ \(\overrightarrow {AO} \) và \(\overrightarrow {SD} \) bằng 90°.
Đáp án: a) Sai; b) Sai; c) Đúng; d) Sai.
Lời giải
Từ giả thiết ta có \(\overrightarrow {AB} .\overrightarrow {AC} = \overrightarrow {AB} .\overrightarrow {BD} = 0\).
I là trung điểm của AB nên \(\overrightarrow {IA} + \overrightarrow {IB} = \overrightarrow 0 \).
J là trung điểm của CD nên \(\overrightarrow {CJ} + \overrightarrow {DJ} = \overrightarrow 0 \).
Lại có \(\overrightarrow {IJ} = \overrightarrow {IA} + \overrightarrow {AC} + \overrightarrow {CJ} ;\overrightarrow {IJ} = \overrightarrow {IB} + \overrightarrow {BD} + \overrightarrow {DJ} \).
Suy ra \(2\overrightarrow {IJ} = \overrightarrow {AC} + \overrightarrow {BD} \Rightarrow \overrightarrow {IJ} = \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {BD} } \right)\).
Do đó \(\overrightarrow {IJ} .\overrightarrow {AB} = \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {BD} } \right).\overrightarrow {AB} = \frac{1}{2}\overrightarrow {AC} .\overrightarrow {AB} + \frac{1}{2}\overrightarrow {BD} .\overrightarrow {AB} = 0\).
Suy ra \(\overrightarrow {IJ} \bot \overrightarrow {AB} \) hay \(IJ \bot AB\).
Câu 3
A. \[\overrightarrow {IJ} \, = \,\frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {BD} } \right)\].
B. \[\overrightarrow {IJ} \, = \,\frac{1}{2}\left( {\overrightarrow {AD} + \overrightarrow {BC} } \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(\overrightarrow {BC} - \overrightarrow {{B_1}{C_1}} = \overrightarrow {{B_1}{A_1}} - \overrightarrow {BA} \).
B. \(\overrightarrow {AD} + \overrightarrow {{D_1}{C_1}} + \overrightarrow {{D_1}{A_1}} = \overrightarrow {DC} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.