Cho tam giác \(ABC\) có cạnh \(AB = 2\,{\rm{cm}}\), \(\widehat {ABC} = 60^\circ \) và \(\widehat {BAC} = 75^\circ \)(như hình vẽ bên dưới).
Diện tích tam giác \(ABC\) gần nhất với giá trị nào sau đây?
Quảng cáo
Trả lời:

Có \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) = 180^\circ - \left( {75^\circ + 60^\circ } \right) = 45^\circ \).
Theo định lí sin ta có: \(\frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Rightarrow AC = \frac{{AB}}{{\sin C}}.\sin B = \frac{2}{{\sin 45^\circ }}.\sin 60^\circ = \sqrt 6 \).
Do đó \({S_{ABC}} = \frac{1}{2}.AB.AC.\sin A = \frac{1}{2}.2.\sqrt 6 .\sin 75^\circ \approx 2,37\) cm2. Chọn A.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) \(M = \sin 45^\circ .\cos 45^\circ + \sin 30^\circ \)\( = \frac{{\sqrt 2 }}{2}.\frac{{\sqrt 2 }}{2} + \frac{1}{2} = 1\).
b) \(Q = \frac{1}{{{{\sin }^2}120^\circ }} - {\cot ^2}120^\circ \)\( = \frac{4}{3} - \frac{1}{3} = 1\).
Lời giải
Để \(A \cap B = \emptyset \) thì \(\left[ \begin{array}{l}m - 2 \le 3\\m - 10 \ge 4\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}m \le 5\\m \ge 14\end{array} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.