Cho tam giác ABC có AB = 5, AC = 8 và \(\widehat {BAC} = 60^\circ \). Khi đó, bán kính đường tròn nội tiếp tam giác ABC bằng
Quảng cáo
Trả lời:

Theo định lí côsin ta có \(BC = \sqrt {A{B^2} + A{C^2} - 2AB.AC.\cos BAC} = \sqrt {25 + 64 - 2.5.8.\cos 60^\circ } = 7\).
Có \({S_{\Delta ABC}} = \frac{1}{2}.AB.AC.\sin \widehat {BAC} = \frac{1}{2}.5.8.\sin 60^\circ = 10\sqrt 3 \).
Có \(p = \frac{{5 + 8 + 7}}{2} = 10\).
Vì \(S = p.r \Rightarrow r = \frac{S}{p} = \frac{{10\sqrt 3 }}{{10}} = \sqrt 3 \). Chọn C.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) \(M = \sin 45^\circ .\cos 45^\circ + \sin 30^\circ \)\( = \frac{{\sqrt 2 }}{2}.\frac{{\sqrt 2 }}{2} + \frac{1}{2} = 1\).
b) \(Q = \frac{1}{{{{\sin }^2}120^\circ }} - {\cot ^2}120^\circ \)\( = \frac{4}{3} - \frac{1}{3} = 1\).
Lời giải
a) Chu vi của tam giác ABC là 8 + 6 + 5 = 19.
b) Có \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2.b.c}} = \frac{{{6^2} + {5^2} - {8^2}}}{{2.6.5}} = - \frac{1}{{20}}\).
c) Có \(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} = \sqrt {\frac{{19}}{2}\left( {\frac{{19}}{2} - 8} \right)\left( {\frac{{19}}{2} - 6} \right)\left( {\frac{{19}}{2} - 5} \right)} = \frac{{3\sqrt {399} }}{4} \approx 14,98\).
d) Có \(R = \frac{{abc}}{{4S}} = \frac{{8.6.5}}{{4.\frac{{3\sqrt {399} }}{4}}} = \frac{{80}}{{\sqrt {399} }}\).
Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.