Câu hỏi:

16/09/2025 10 Lưu

Cho tam giác ABC, biết AB = 13 cm, BC = 15 cm, \(\widehat B = 60^\circ \).

a) Công thức tính diện tích tam giác ABC là \(S = \frac{1}{2}BA.BC.\sin A\).

b) Diện tích tam giác ABC là \(S = \frac{{195\sqrt 3 }}{4}\) cm2.

c) Độ dài cạnh \(AC = \sqrt {199} \) cm.

d) Độ dài bán kính đường tròn nội tiếp của tam giác ABC là \(r = 2 + \sqrt 3 \) cm.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \(S = \frac{1}{2}BA.BC.\sin B\).

b) \(S = \frac{1}{2}BA.BC.\sin B\)\( = \frac{1}{2}.13.15.\sin 60^\circ = \frac{{195\sqrt 3 }}{4}\) (cm2).

c) Ta có \(A{C^2} = A{B^2} + B{C^2} - 2AB.BC.\cos B\)\( = {13^2} + {15^2} - 2.13.15.\cos 60^\circ = 199\) \( \Rightarrow AC = \sqrt {199} \).

d) Ta có \(S = pr \Rightarrow r = \frac{S}{p}\)\( = \frac{{195\sqrt 3 }}{4}:\frac{{13 + 15 + \sqrt {199} }}{2}\)\( = \frac{{195\sqrt 3 }}{{2\left( {28 + \sqrt {199} } \right)}}\).

Đáp án: a) Sai;   b) Đúng;   c) Đúng;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(M = \sin 45^\circ .\cos 45^\circ + \sin 30^\circ \)\( = \frac{{\sqrt 2 }}{2}.\frac{{\sqrt 2 }}{2} + \frac{1}{2} = 1\).

b) \(Q = \frac{1}{{{{\sin }^2}120^\circ }} - {\cot ^2}120^\circ \)\( = \frac{4}{3} - \frac{1}{3} = 1\).

Lời giải

a) Chu vi của tam giác ABC là 8 + 6 + 5 = 19.

b) Có \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2.b.c}} = \frac{{{6^2} + {5^2} - {8^2}}}{{2.6.5}} = - \frac{1}{{20}}\).

c) Có \(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} = \sqrt {\frac{{19}}{2}\left( {\frac{{19}}{2} - 8} \right)\left( {\frac{{19}}{2} - 6} \right)\left( {\frac{{19}}{2} - 5} \right)} = \frac{{3\sqrt {399} }}{4} \approx 14,98\).

d) Có \(R = \frac{{abc}}{{4S}} = \frac{{8.6.5}}{{4.\frac{{3\sqrt {399} }}{4}}} = \frac{{80}}{{\sqrt {399} }}\).

Đáp án: a) Đúng;   b) Đúng;   c) Đúng;   d) Sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP