B. TỰ LUẬN
Xét tính đúng sai của các mệnh đề sau và mệnh đề phủ định của nó.
a) \(\forall x \in \mathbb{R}:{x^2} > 0\);
b) \(\exists x \in \mathbb{R}:x > {x^2}\);
c) \(\forall n \in \mathbb{N},{n^2} + 1\) không chia hết cho 3.
B. TỰ LUẬN
Xét tính đúng sai của các mệnh đề sau và mệnh đề phủ định của nó.
a) \(\forall x \in \mathbb{R}:{x^2} > 0\);
b) \(\exists x \in \mathbb{R}:x > {x^2}\);
c) \(\forall n \in \mathbb{N},{n^2} + 1\) không chia hết cho 3.
Quảng cáo
Trả lời:

a) Mệnh đề trên sai vì 02 = 0.
Mệnh đề phủ định là: \(\exists x \in \mathbb{R}:{x^2} \le 0\). Đây là mệnh đề đúng.
b) Mệnh đề trên đúng vì \(\frac{1}{2} > {\left( {\frac{1}{2}} \right)^2}\).
Mệnh đề phủ định là: \(\forall x \in \mathbb{R}:x \le {x^2}\). Mệnh đề phủ định sai.
c) TH1: \(n = 3k\)
Ta có \({n^2} + 1 = {\left( {3k} \right)^2} + 1 = 9{k^2} + 1\) chia 3 dư 1.
TH2: \(n = 3k + 1\)
Ta có \({n^2} + 1 = {\left( {3k + 1} \right)^2} + 1 = 9{k^2} + 6k + 2\) chia 3 dư 2.
TH3: \(n = 3k + 2\)
Ta có \({n^2} + 1 = {\left( {3k + 2} \right)^2} + 1 = 9{k^2} + 12k + 5\) chia cho 3 dư 2.
Vậy \(\forall n \in \mathbb{N},{n^2} + 1\) không chia hết cho 3 là mệnh đề đúng.
Mệnh đề phủ định: \(\exists n \in \mathbb{N},{n^2} + 1\) chia hết cho 3. Mệnh đề này sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Do \(90^\circ < x < 180^\circ \) nên \(\cos x < 0\).
b) Ta có \({\cos ^2}x = 1 - {\sin ^2}x = 1 - \frac{{25}}{{169}} = \frac{{144}}{{169}}\).
Do đó \(P = 2{\sin ^2}x - {\cos ^2}x = 2.\left( {\frac{{25}}{{169}}} \right) - \frac{{144}}{{169}} = - \frac{{94}}{{169}}\).
c) Do \(\cos x < 0\) và \({\cos ^2}x = \frac{{144}}{{169}}\) nên \(\cos x = - \frac{{12}}{{13}}\).
Suy ra \(\tan x = \frac{{\sin x}}{{\cos x}} = - \frac{5}{{12}}\).
d) Ta có \(A = \frac{{{{\sin }^2}x}}{{1 + {{\cos }^2}x}} = \frac{{{{\sin }^2}x}}{{1 + 1 - {{\sin }^2}x}} = \frac{{{{\left( {\frac{5}{{13}}} \right)}^2}}}{{2 - {{\left( {\frac{5}{{13}}} \right)}^2}}} = \frac{{25}}{{313}}\).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.
Lời giải
a) Ta có \(\frac{{\sin \alpha - \cos \alpha }}{{2\sin \alpha + 3\cos \alpha }} = \frac{{\frac{{\sin \alpha }}{{\cos \alpha }} - 1}}{{2\frac{{\sin \alpha }}{{\cos \alpha }} + 3}}\)\( = \frac{{\tan \alpha - 1}}{{2.\tan \alpha + 3}}\)\( = \frac{{ - 2 - 1}}{{2.\left( { - 2} \right) + 3}} = 3\).
b) Vì \(90^\circ < \alpha < 180^\circ \) nên \(\cos \alpha < 0\).
c) Có \({\cos ^2}\alpha = \frac{1}{{1 + {{\tan }^2}\alpha }} = \frac{1}{{1 + {{\left( { - 2} \right)}^2}}} = \frac{1}{5}\).
d) Có \(\sin \left( {180^\circ - \alpha } \right) = \sin \alpha \).
Có \({\sin ^2}\alpha = 1 - {\cos ^2}\alpha = 1 - \frac{1}{5} = \frac{4}{5} \Rightarrow \sin \alpha = \frac{{2\sqrt 5 }}{5}\) vì \(90^\circ < \alpha < 180^\circ \).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.