Câu hỏi:

16/09/2025 30 Lưu

a) Cho tập hợp \[M = \left\{ {x \in \mathbb{Z}\,\,\left| {\,\,\left( {{x^2} - 1} \right)\left( {2{x^2} - 3x - 2} \right) = 0} \right.} \right\}\]. Viết tập hợp \(M\) dưới dạng liệt kê.

b) Cho hai tập hợp \(A = \left( { - \,2\,;\,3} \right)\)\(B = \left[ {1\,; + \,\infty } \right)\). Xác định các tập hợp \(A \cap B\)\(A\backslash B\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta có \[\left( {{x^2} - 1} \right)\left( {2{x^2} - 3x - 2} \right) = 0\]\[ \Leftrightarrow \left[ \begin{array}{l}{x^2} - 1 = 0\\2{x^2} - 3x - 2 = 0\end{array} \right.\]\[ \Leftrightarrow \left[ \begin{array}{l}x =  \pm 1\\x = 2\\x =  - \frac{1}{2}\end{array} \right.\].

Vì \(x \in \mathbb{Z}\) nên \(x =  \pm 1;x = 2\).

Vậy \(M = \left\{ { - 1;1;2} \right\}\).

b) Có \(A \cap B = \left[ {1;3} \right)\); \(A\backslash B = \left( { - 2;1} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Do \(90^\circ < x < 180^\circ \) nên \(\cos x < 0\).

b) Ta có \({\cos ^2}x = 1 - {\sin ^2}x = 1 - \frac{{25}}{{169}} = \frac{{144}}{{169}}\).

Do đó \(P = 2{\sin ^2}x - {\cos ^2}x = 2.\left( {\frac{{25}}{{169}}} \right) - \frac{{144}}{{169}} = - \frac{{94}}{{169}}\).

c) Do \(\cos x < 0\)\({\cos ^2}x = \frac{{144}}{{169}}\) nên \(\cos x = - \frac{{12}}{{13}}\).

Suy ra \(\tan x = \frac{{\sin x}}{{\cos x}} = - \frac{5}{{12}}\).

d) Ta có \(A = \frac{{{{\sin }^2}x}}{{1 + {{\cos }^2}x}} = \frac{{{{\sin }^2}x}}{{1 + 1 - {{\sin }^2}x}} = \frac{{{{\left( {\frac{5}{{13}}} \right)}^2}}}{{2 - {{\left( {\frac{5}{{13}}} \right)}^2}}} = \frac{{25}}{{313}}\).

Đáp án: a) Sai;   b) Đúng; c) Sai; d) Đúng.

Lời giải

a) Ta có \(\frac{{\sin \alpha - \cos \alpha }}{{2\sin \alpha + 3\cos \alpha }} = \frac{{\frac{{\sin \alpha }}{{\cos \alpha }} - 1}}{{2\frac{{\sin \alpha }}{{\cos \alpha }} + 3}}\)\( = \frac{{\tan \alpha - 1}}{{2.\tan \alpha + 3}}\)\( = \frac{{ - 2 - 1}}{{2.\left( { - 2} \right) + 3}} = 3\).

b) Vì \(90^\circ < \alpha < 180^\circ \) nên \(\cos \alpha < 0\).

c) Có \({\cos ^2}\alpha = \frac{1}{{1 + {{\tan }^2}\alpha }} = \frac{1}{{1 + {{\left( { - 2} \right)}^2}}} = \frac{1}{5}\).

d) Có \(\sin \left( {180^\circ - \alpha } \right) = \sin \alpha \).

\({\sin ^2}\alpha = 1 - {\cos ^2}\alpha = 1 - \frac{1}{5} = \frac{4}{5} \Rightarrow \sin \alpha = \frac{{2\sqrt 5 }}{5}\)\(90^\circ < \alpha < 180^\circ \).

Đáp án: a) Đúng;   b) Sai; c) Đúng; d) Sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(2\) .                                 
B. \(1 + \tan \alpha \).           
C. \(\frac{1}{{{{\cos }^2}\alpha }}\).                                        
D. \(\frac{1}{{si{n^2}\alpha }}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP