Biểu diễn hình học tập nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l} - x + 2y \le 6\\x + y \le 4\\x \ge 0\\y \ge 0\end{array} \right.\).
Biểu diễn hình học tập nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l} - x + 2y \le 6\\x + y \le 4\\x \ge 0\\y \ge 0\end{array} \right.\).
Quảng cáo
Trả lời:
Vẽ các đường thẳng \({d_1}: - x + 2y = 6;{d_2}:x + y = 4\); \(Oy:x = 0\); \(Ox:y = 0\).
Điểm M(1; 1) có tọa độ thỏa mãn tất cả các bất phương trình trong hệ nên ta tô đậm các nửa mặt phẳng bờ \({d_1};{d_2};Ox;Oy\) không chứa điểm M.
Miền không bị tô đậm là hình tứ giác OABC kể cả bốn cạnh OA, AB, BC, CO trong hình vẽ dưới là miền nghiệm của hệ bất phương trình đã cho.

Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có \(\frac{{\sin \alpha - \cos \alpha }}{{2\sin \alpha + 3\cos \alpha }} = \frac{{\frac{{\sin \alpha }}{{\cos \alpha }} - 1}}{{2\frac{{\sin \alpha }}{{\cos \alpha }} + 3}}\)\( = \frac{{\tan \alpha - 1}}{{2.\tan \alpha + 3}}\)\( = \frac{{ - 2 - 1}}{{2.\left( { - 2} \right) + 3}} = 3\).
b) Vì \(90^\circ < \alpha < 180^\circ \) nên \(\cos \alpha < 0\).
c) Có \({\cos ^2}\alpha = \frac{1}{{1 + {{\tan }^2}\alpha }} = \frac{1}{{1 + {{\left( { - 2} \right)}^2}}} = \frac{1}{5}\).
d) Có \(\sin \left( {180^\circ - \alpha } \right) = \sin \alpha \).
Có \({\sin ^2}\alpha = 1 - {\cos ^2}\alpha = 1 - \frac{1}{5} = \frac{4}{5} \Rightarrow \sin \alpha = \frac{{2\sqrt 5 }}{5}\) vì \(90^\circ < \alpha < 180^\circ \).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.
Lời giải
a) Do \(90^\circ < x < 180^\circ \) nên \(\cos x < 0\).
b) Ta có \({\cos ^2}x = 1 - {\sin ^2}x = 1 - \frac{{25}}{{169}} = \frac{{144}}{{169}}\).
Do đó \(P = 2{\sin ^2}x - {\cos ^2}x = 2.\left( {\frac{{25}}{{169}}} \right) - \frac{{144}}{{169}} = - \frac{{94}}{{169}}\).
c) Do \(\cos x < 0\) và \({\cos ^2}x = \frac{{144}}{{169}}\) nên \(\cos x = - \frac{{12}}{{13}}\).
Suy ra \(\tan x = \frac{{\sin x}}{{\cos x}} = - \frac{5}{{12}}\).
d) Ta có \(A = \frac{{{{\sin }^2}x}}{{1 + {{\cos }^2}x}} = \frac{{{{\sin }^2}x}}{{1 + 1 - {{\sin }^2}x}} = \frac{{{{\left( {\frac{5}{{13}}} \right)}^2}}}{{2 - {{\left( {\frac{5}{{13}}} \right)}^2}}} = \frac{{25}}{{313}}\).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Biết rằng điểm \(M\left( {a\,;\,b} \right)\) thoả mãn \[\widehat {MOx} = 30^\circ \] (hình vẽ minh hoạ). Khi đó giá trị của \(a\) bằng A. \(\frac{3}{5}\). B. \(\frac{1}{2}\). C. \(\frac{{\sqrt 3 }}{2}\). D. \(\frac{4}{5}\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/2-1758597360.png)