Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    Hướng dẫn giải
Đáp án đúng là: D
Phương trình bậc nhất hai ẩn có dạng \[ax + by = c\] với \(a \ne 0\) hoặc \(b \ne 0\).
Xét các đáp án, ta thấy:
 \[\left( {x - 5} \right) + \left( {2y - 6} \right) = 0\] hay \(x - 5 + 2y - 6 = 0\) suy ra \(x + 2y = 11\) nên đáp án A là phương trình bậc nhất hai ẩn.
 \[5x - 3z = 6\] là phương trình bậc nhất hai ẩn \(x,z\) nên đáp án B là phương trình bậc nhất hai ẩn.
 \(5x - 8y = 0\) là phương trình bậc nhất hai ẩn \(x,y\)
 \[\left( {x - 2} \right)\left( {2y - 3} \right) = 3\] hay \[2xy - 3x - 4y + 6 = 3\] suy ra \[2xy - 3x - 4y = - 3\] nên đáp án D không là phương trình bậc nhất hai ẩn.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Để cặp số \(\left( { - 2;\,\,3} \right)\) là nghiệm của hệ phương trình, ta thay \(x = - 2\) và \(y = 3\) vào hệ phương trình, ta được: \(\left\{ {\begin{array}{*{20}{l}}{a \cdot \left( { - 2} \right) + 3 = 5}\\{3 \cdot \left( { - 2} \right) + b \cdot 3 = 0}\end{array}} \right.\)
Giải hệ phương trình trên, ta được: \(\left\{ {\begin{array}{*{20}{l}}{ - 2a = 2}\\{ - 6 + 3b = 0}\end{array}} \right.\) hay \(\left\{ {\begin{array}{*{20}{l}}{a = - 1}\\{b = 2.}\end{array}} \right.\)
Vậy, để cặp số \(\left( { - 2;\,\,3} \right)\) là nghiệm của hệ phương trình thì \(a = - 1\) và \(b = 2\).
Lời giải
Hướng dẫn giải
Đáp án: 2.
Điều kiện xác định: \(x \ne 4,\,\,x \ne - 4.\)
\(\frac{{2x - 5}}{{x + 4}} + \frac{x}{{4 - x}} = \frac{{17x - 56}}{{16 - {x^2}}}\)
\(\frac{{2x - 5}}{{x + 4}} - \frac{x}{{x - 4}} = \frac{{ - 17x + 56}}{{{x^2} - 16}}\)
\(\frac{{\left( {2x - 5} \right)\left( {x - 4} \right)}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} - \frac{{x\left( {x + 4} \right)}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} = \frac{{ - 17x + 56}}{{\left( {x - 4} \right)\left( {x + 4} \right)}}\)
\(\left( {2x - 5} \right)\left( {x - 4} \right) - x\left( {x + 4} \right) = - 17x + 56\)
\(2{x^2} - 8x - 5x + 20 - {x^2} - 4x = - 17x + 56\)
\({x^2} = 36\)
\(x = 6\) (thỏa mãn) hoặc \(x = - 6\) (thỏa mãn).
Vậy nghiệm của phương trình đã cho là \(x = 6;\,\,x = - 6.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
                            
Cho bất phương trình \(m\left( {5x - 2} \right) < 1\).
a) Bất phương trình đã cho là bất phương trình bậc nhất ẩn \(x\) với \(m \in \mathbb{R}\) tùy ý.
b) Khi \(m = 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{3}{5}\).
c) Khi \(m = - 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{1}{5}\).
d) Khi \(m = - 2,\) bất phương trình đã cho có nghiệm nguyên lớn nhất là \( - 1\).
                        
                    
                Cho bất phương trình \(m\left( {5x - 2} \right) < 1\).
a) Bất phương trình đã cho là bất phương trình bậc nhất ẩn \(x\) với \(m \in \mathbb{R}\) tùy ý.
b) Khi \(m = 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{3}{5}\).
c) Khi \(m = - 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{1}{5}\).
d) Khi \(m = - 2,\) bất phương trình đã cho có nghiệm nguyên lớn nhất là \( - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
 Nhắn tin Zalo
 Nhắn tin Zalo