Câu hỏi:

18/09/2025 7 Lưu

Cho tam giác \(ABC\) có \(BC = 18\;{\rm{cm}}{\rm{.}}\)  Gọi \(D\) là trung điểm của \(BC\) và \(G\) là trọng tâm của tam giác \(ABC.\) Qua \(G\) kẻ đường thẳng song song với \(AB\) cắt \(BC\) tại \(M.\) Tính độ dài đoạn thẳng \(MD.\) (Đơn vị: \({\rm{cm}}\)).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(3\)

Tính độ dài đoạn thẳng \(MD.\) (Đơn vị: \({\rm{cm}}\)). (ảnh 1)

Vì \(D\) là trung điểm của \(BC\) nên \(BD = \frac{1}{2}BC = \frac{1}{2} \cdot 18 = 9\;\left( {{\rm{cm}}} \right).\)

Vì \(AD\) là trung tuyến của tam giác \(ABC\) và \(G\) là trọng tâm của tam giác \(ABC\) nên \(\frac{{GD}}{{AD}} = \frac{1}{3}.\)

Tam giác \(ADB\) có \(MG\;{\rm{//}}\;AB\) nên theo định lí Thalès ta có: \(\frac{{MD}}{{BD}} = \frac{{GD}}{{AD}} = \frac{1}{3}.\)

Do đó, \(MD = \frac{1}{3}BD = \frac{1}{3} \cdot 9 = 3\;\left( {{\rm{cm}}} \right).\) Vậy \(MD = 3\;{\rm{cm}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(6\)

Độ dài đoạn thẳng \(AK\) bằng bao nhiêu \({\rm{cm?}}\) (ảnh 1)

Qua \(D\) kẻ đường thẳng song song với \(KB\) cắt \(AC\) tại \(M.\)

Vì \(\frac{{BD}}{{CD}} = 3\) nên \(\frac{{BD}}{{BC}} = \frac{3}{4}.\) Vì \(AE = \frac{1}{3}AD\) nên \(\frac{{AE}}{{ED}} = \frac{1}{2}.\)

Tam giác \(AMD\) có \(KE\;{\rm{//}}\;MD\) nên theo định lí Thalès ta có: \(\frac{{AK}}{{KM}} = \frac{{AE}}{{ED}} = \frac{1}{2}\) hay \(AK = \frac{1}{2}KM.\)

Tam giác \(CKB\) có \(KB\;{\rm{//}}\;MD\) nên theo định lí Thalès ta có: \(\frac{{KM}}{{KC}} = \frac{{BD}}{{BC}} = \frac{3}{4}\) hay \(KM = \frac{3}{4}KC.\)

Do đó, \(AK = \frac{1}{2} \cdot \frac{3}{4}KC = \frac{3}{8}KC.\) Do đó, \(AK = \frac{3}{{11}}AC = \frac{3}{{11}} \cdot 22 = 6\;\left( {{\rm{cm}}} \right).\)

Vậy \(AK = 6\;{\rm{cm}}{\rm{.}}\)

Lời giải

Đáp án: \(120\)

Vì tam giác \(ABC\) có: \(FE\;{\rm{//}}\;AB\) nên theo định lí Thalès ta có: \(\frac{{AF}}{{FC}} = \frac{{BE}}{{EC}}.\)

Do đó, \(BE = \frac{{AF}}{{FC}} \cdot EC = \frac{{80}}{{40}} \cdot 60 = 120\;\left( {\rm{m}} \right).\)

Vậy khoảng cách giữa hai vị trí \(E\) và \(B\) bằng \(120\;{\rm{m}}{\rm{.}}\)