Câu hỏi:

18/09/2025 16 Lưu

Thu gọn đơn thức \[A\] và tìm hệ số, bậc của nó: \[A = - \frac{3}{2}{x^2}{y^4}{x^3}{y^2}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \[A = - \frac{3}{2}{x^2}{y^4}{x^3}{y^2} = - \frac{3}{2}\left( {{x^2}{x^3}} \right)\left( {{y^4}{y^2}} \right) = - \frac{3}{2}{x^5}{y^6}\].

Đơn thức \[A\]hệ số là \[ - \frac{3}{2}\]; bậc là 11.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có \(M = 2{x^2}{y^2} \cdot \left( { - 3xy} \right) + 5{x^3}{y^3} = - 6{x^3}{y^3} + 5{x^3}{y^3} = - {x^3}{y^3}.\)

Bậc của đa thức \[M\] là 6.

b) Thay \(x = - 1\) và \(y = - 1\) vào biểu thức \[M\], ta có:

\[M = - {x^3}{y^3} = - {\left( { - 1} \right)^3} \cdot {\left( { - 1} \right)^3} = - 1.\]

Vậy tại \(x = - 1\) và \(y = - 1\) thì \[M = - 1.\]

Lời giải

Ta có \[M - N = \left( {2{x^2} - 2xy - {y^2}} \right) - \left( {{x^2} + 2xy + {y^2} - 1} \right)\]

\[ = 2{x^2} - 2xy - {y^2} - {x^2} - 2xy - {y^2} + 1\]

\[ = {x^2} - 4xy - 2{y^2} + 1\].

Thay \(x = 1\,;\,y = - 2\) vào đa thức \[M - N\], ta có

\[M - N = {1^2} - 4 \cdot 1 \cdot \left( { - 2} \right) - 2 \cdot {\left( { - 2} \right)^2} + 1 = 2\].

Vậy với \[x = 1\,;\,\,y = - 2\] thì \[M - N = 2.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP