Câu hỏi:

18/09/2025 51 Lưu

Cho hai đa thức: \(E = {x^7} - 4{x^3}{y^2} - 5xy + 7\)\(F = {x^7} + 5{x^3}{y^2} - 3xy - 3\).

Tìm đa thức \(H\) sao cho \(E + H = F\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(E + H = F\)

Suy ra \(H = F - E\)\( = \left( {{x^7} + 5{x^3}{y^2} - 3xy - 3} \right) - \left( {{x^7} - 4{x^3}{y^2} - 5xy + 7} \right)\)

\( = {x^7} + 5{x^3}{y^2} - 3xy - 3 - {x^7} + 4{x^3}{y^2} + 5xy - 7\)

\( = \left( {{x^7} - {x^7}} \right) + \left( {5{x^3}{y^2} + 4{x^3}{y^2}} \right) + \left( { - 3xy + 5xy} \right) + \left( { - 3 - 7} \right)\)

\( = 9{x^3}{y^2} + 2xy - 10\).

Vậy \(H = 9{x^3}{y^2} + 2xy - 10.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\[25{\left( {x + 3} \right)^2} + \left( {1-5x} \right)\left( {1 + 5x} \right) = 8\]

\(25\left( {{x^2} + 6x + 9} \right) + \left[ {{1^2} - {{\left( {5x} \right)}^2}} \right] = 8\)

\[25{x^2} + 150x + 225 + 1 - 25{x^2} = 8\]

\[150x = - 218\]

\(x = - \frac{{109}}{{75}}.\)

Vậy \(x = - \frac{{109}}{{75}}.\)

Lời giải

\[{x^3} + 9{x^2} + 27x + 19 = 0\]

\[{x^3} + 9{x^2} + 27x + 27 - 8 = 0\]

\[{\left( {x + 3} \right)^3} = 8\]

Suy ra \[x + 3 = 2\]

\(x = - 1.\)

Vậy \(x = - 1.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP