Câu hỏi:

20/09/2025 5 Lưu

Thực hiện phép tính:

d) \[\frac{{4 - {x^2}}}{{x - 3}} + \frac{{2x - 2{x^2}}}{{3 - x}} + \frac{{5 - 4x}}{{x - 3}}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

d) \[\frac{{4 - {x^2}}}{{x - 3}} + \frac{{2x - 2{x^2}}}{{3 - x}} + \frac{{5 - 4x}}{{x - 3}}\]

\[ = \frac{{4 - {x^2}}}{{x - 3}} - \frac{{2x - 2{x^2}}}{{x - 3}} + \frac{{5 - 4x}}{{x - 3}}\]

\[ = \frac{{4 - {x^2} - 2x + 2{x^2} + 5 - 4x}}{{x - 3}}\]
\[ = \frac{{{x^2} - 6x + 9}}{{x - 3}} = \frac{{{{\left( {x - 3} \right)}^2}}}{{x - 3}} = x - 3.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

j) \(1 + \frac{{{x^3} - x}}{{{x^2} + 1}} \cdot \left( {\frac{1}{{1 - x}} - \frac{1}{{1 - {x^2}}}} \right)\)

\( = 1 + \frac{{x\left( {{x^2} - 1} \right)}}{{{x^2} + 1}} \cdot \left[ {\frac{1}{{1 - x}} - \frac{1}{{\left( {1 - x} \right)\left( {1 + x} \right)}}} \right]\)

\( = 1 - \frac{{x\left( {1 - {x^2}} \right)}}{{{x^2} + 1}} \cdot \frac{{1 + x - 1}}{{\left( {1 - x} \right)\left( {1 + x} \right)}}\)
\( = 1 - \frac{{x\left( {1 - x} \right)\left( {1 + x} \right)}}{{{x^2} + 1}} \cdot \frac{x}{{\left( {1 - x} \right)\left( {1 + x} \right)}}\)

\( = 1 - \frac{{{x^2}}}{{{x^2} + 1}} = \frac{{{x^2} + 1 - {x^2}}}{{{x^2} + 1}} = \frac{1}{{{x^2} + 1}}.\)

Lời giải

a) \(\left( {x + 2} \right)\left( {x + 3} \right) - x\left( {x + 6} \right) = 4\)

\({x^2} + 3x + 2x + 6 - {x^2} - 6x = 4\)

\( - x + 6 = 4\)

\( - x = - 2\)

\(x = 2\).

Vậy \(x = 2.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP