Đề cương ôn tập cuối kì 1 Toán 8 Cánh diều cấu trúc mới (Tự luận) có đáp án - Phần 2
30 người thi tuần này 4.6 384 lượt thi 29 câu hỏi 45 phút
🔥 Đề thi HOT:
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
20 câu trắc nghiệm Toán 8 Kết nối tri thức Ôn tập chương I (Đúng sai - trả lời ngắn) có đáp án
Trắc nghiệm Bài tập cơ bản Những hằng đẳng thức đáng nhớ có đáp án
3 câu Trắc nghiệm Toán 8 Bài 12: Hình vuông có đáp án (Vận dụng)
2 câu Trắc nghiệm Toán 8 Bài 10: Đường thẳng song song với một đường thẳng cho trước có đáp án (Vận dụng cao)
6 câu Trắc nghiệm Toán 8 Bài 11: Hình thoi có đáp án (Vận dụng)
10 câu Trắc nghiệm Toán 8 Bài 4: Phương trình tích có đáp án (Vận dụng)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) \(\left( {x + 2} \right)\left( {x + 3} \right) - x\left( {x + 6} \right) = 4\)
\({x^2} + 3x + 2x + 6 - {x^2} - 6x = 4\)
\( - x + 6 = 4\)
\( - x = - 2\)
\(x = 2\).
Vậy \(x = 2.\)Lời giải
b) \(\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right) + x\left( {3 - {x^2}} \right) = x\)
\(\left( {{x^3} - {2^3}} \right) + \left( {3x - {x^3}} \right) - x = 0\)
\(2x - 8 = 0\)
\(2x = 8\)
\(x = 4\).
Vậy \(x = 4\).Lời giải
c) \({x^2} - 5x = 0\)
\(x\left( {x - 5} \right) = 0\)
\(x = 0\) hoặc \(x - 5 = 0\)
\(x = 0\) hoặc \(x = 5\)
Vậy \(x = 0\); \(x = 5\).Lời giải
d) \[x\left( {x - 4} \right) - x + 4 = 0\]
\(x\left( {x - 4} \right) - \left( {x - 4} \right) = 0\)
\(\left( {x - 4} \right)\left( {x - 1} \right) = 0\)
\(x - 4 = 0\) hoặc \(x - 1 = 0\)
\(x = 4\) hoặc \(x = 1\).
Vậy \(x = 4\); \(x = 1\).Lời giải
e) \({x^2} - 4 - \left( {x - 2} \right) = 0\)
\(\left( {x - 2} \right)\left( {x + 2} \right) - \left( {x - 2} \right) = 0\)
\(\left( {x - 2} \right)\left( {x + 2 - 1} \right) = 0\)
\[\left( {x - 2} \right)\left( {x + 1} \right) = 0\]
\(x - 2 = 0\) hoặc \(x + 1 = 0\)
\(x = 2\) hoặc \(x = - 1\).
Vậy \(x = 2\); \(x = - 1\).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 20
Cho biểu thức \(B = \frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{4}{{1 - {x^2}}}\) với \(x \ne 1\) và \(x \ne - 1.\)
a) Chứng minh \(B = \frac{4}{{x + 1}}.\)
b) Tính giá trị của biểu thức \[B\] tại \(x = - \frac{1}{2}.\)
c) Tìm các số nguyên \[x\] để giá trị của biểu thức \[B\] là số nguyên.
Cho biểu thức \(B = \frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{4}{{1 - {x^2}}}\) với \(x \ne 1\) và \(x \ne - 1.\)
a) Chứng minh \(B = \frac{4}{{x + 1}}.\)
b) Tính giá trị của biểu thức \[B\] tại \(x = - \frac{1}{2}.\)
c) Tìm các số nguyên \[x\] để giá trị của biểu thức \[B\] là số nguyên.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 26
Cho ba đường thẳng \(\left( {{d_1}} \right):y = - 2x,\) \(\left( {{d_2}} \right):y = 1,5x + 7\) và \(\left( {{d_3}} \right):y = - 2mx + 5.\)
a) Tìm tọa độ giao điểm của hai đường thẳng \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right).\)
b) Tìm các giá trị của tham số \(m\) để ba đường thẳng \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\) và \(\left( {{d_3}} \right)\) cắt nhau tại một điểm.
Cho ba đường thẳng \(\left( {{d_1}} \right):y = - 2x,\) \(\left( {{d_2}} \right):y = 1,5x + 7\) và \(\left( {{d_3}} \right):y = - 2mx + 5.\)
a) Tìm tọa độ giao điểm của hai đường thẳng \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right).\)
b) Tìm các giá trị của tham số \(m\) để ba đường thẳng \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\) và \(\left( {{d_3}} \right)\) cắt nhau tại một điểm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.