Cho biểu thức \[D = \left( {\frac{{x - 4}}{{{x^2} - 2x}} + \frac{2}{{x - 2}}} \right):\left( {\frac{{x + 2}}{x} - \frac{x}{{x - 2}}} \right).\]
a) Tìm điều kiện xác định rồi rút gọn biểu thức \(D.\)
b) Tìm \[x\] để \(D > 0.\)
c) Với giá trị nào của \(x\) thì giá trị của biểu thức \(D\) là số nguyên âm lớn nhất?
Cho biểu thức \[D = \left( {\frac{{x - 4}}{{{x^2} - 2x}} + \frac{2}{{x - 2}}} \right):\left( {\frac{{x + 2}}{x} - \frac{x}{{x - 2}}} \right).\]
a) Tìm điều kiện xác định rồi rút gọn biểu thức \(D.\)
b) Tìm \[x\] để \(D > 0.\)
c) Với giá trị nào của \(x\) thì giá trị của biểu thức \(D\) là số nguyên âm lớn nhất?
Quảng cáo
Trả lời:

Hướng dẫn giải
a) Ta có:
⦁ \({x^2} - 2x = x\left( {x - 2} \right).\)
⦁ \[\frac{{x + 2}}{x} - \frac{x}{{x - 2}} = \frac{{\left( {x + 2} \right)\left( {x - 2} \right)}}{{x\left( {x - 2} \right)}} - \frac{{{x^2}}}{{x\left( {x - 2} \right)}} = \frac{{{x^2} - 4 - {x^2}}}{{x\left( {x - 2} \right)}} = \frac{{ - 4}}{{x\left( {x - 2} \right)}}.\]
Khi đó, điều kiện xác định của biểu thức \(D\) là \[\left\{ \begin{array}{l}{x^2} - 2x \ne 0\\x - 2 \ne 0\\\frac{{x + 2}}{x} - \frac{x}{{x - 2}} \ne 0\end{array} \right.,\] hay \[\left\{ \begin{array}{l}x\left( {x - 2} \right) \ne 0\\x \ne 2\\\frac{{ - 4}}{{x\left( {x - 2} \right)}} \ne 0\end{array} \right.,\] tức là \[\left\{ \begin{array}{l}x \ne 0\\x \ne 2\end{array} \right..\]
Với \(x \ne 0\) và \(x \ne 2,\) ta có:
\[D = \left( {\frac{{x - 4}}{{{x^2} - 2x}} + \frac{2}{{x - 2}}} \right):\left( {\frac{{x + 2}}{x} - \frac{x}{{x - 2}}} \right)\]
\[ = \left[ {\frac{{x - 4}}{{x\left( {x - 2} \right)}} + \frac{{2x}}{{x\left( {x - 2} \right)}}} \right]:\left[ {\frac{{\left( {x + 2} \right)\left( {x - 2} \right)}}{{x\left( {x - 2} \right)}} - \frac{{{x^2}}}{{x\left( {x - 2} \right)}}} \right]\]
\[ = \frac{{x - 4 + 2x}}{{x\left( {x - 2} \right)}}:\frac{{{x^2} - 4 - {x^2}}}{{x\left( {x - 2} \right)}}\]
\[ = \frac{{3x - 4}}{{x\left( {x - 2} \right)}}:\frac{{ - 4}}{{x\left( {x - 2} \right)}}\]
\[ = \frac{{3x - 4}}{{x\left( {x - 2} \right)}} \cdot \frac{{x\left( {x - 2} \right)}}{{ - 4}} = \frac{{ - 3x + 4}}{4}.\]
Vậy với \(x \ne 0\) và \(x \ne 2,\) thì \(D = \frac{{ - 3x + 4}}{4}.\)
b) Với \(x \ne 0\) và \(x \ne 2,\) ta có: \(D > 0\) khi \(\frac{{ - 3x + 4}}{4} > 0,\) do đó \( - 3x + 4 > 0\) (vì \(4 > 0).\)
Suy ra \(3x < 4,\) nên \(x < \frac{4}{3}.\)
Kết hợp với điều kiện \(x \ne 0\) và \(x \ne 2,\) ta được \(x < \frac{4}{3}\) và \(x \ne 0.\)
Vậy với \(x < \frac{4}{3}\) và \(x \ne 0\) thì \(D > 0.\)
c) Để \(D\) là số nguyên âm lớn nhất thì \(D = - 1,\) khi đó:
\(\frac{{ - 3x + 4}}{4} = - 1\)
\( - 3x + 4 = - 4\)
\( - 3x = - 8\)
\(x = \frac{8}{3}\) (thoả mãn điều kiện).
Vậy với \(x = \frac{8}{3}\) thì \(D\) có giá trị là số nguyên âm lớn nhất.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
b) \(\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right) + x\left( {3 - {x^2}} \right) = x\)
\(\left( {{x^3} - {2^3}} \right) + \left( {3x - {x^3}} \right) - x = 0\)
\(2x - 8 = 0\)
\(2x = 8\)
\(x = 4\).
Vậy \(x = 4\).Lời giải
j) \(1 + \frac{{{x^3} - x}}{{{x^2} + 1}} \cdot \left( {\frac{1}{{1 - x}} - \frac{1}{{1 - {x^2}}}} \right)\)
\( = 1 + \frac{{x\left( {{x^2} - 1} \right)}}{{{x^2} + 1}} \cdot \left[ {\frac{1}{{1 - x}} - \frac{1}{{\left( {1 - x} \right)\left( {1 + x} \right)}}} \right]\)
\( = 1 - \frac{{x\left( {1 - {x^2}} \right)}}{{{x^2} + 1}} \cdot \frac{{1 + x - 1}}{{\left( {1 - x} \right)\left( {1 + x} \right)}}\)
\( = 1 - \frac{{x\left( {1 - x} \right)\left( {1 + x} \right)}}{{{x^2} + 1}} \cdot \frac{x}{{\left( {1 - x} \right)\left( {1 + x} \right)}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Cho biểu thức \(B = \frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{4}{{1 - {x^2}}}\) với \(x \ne 1\) và \(x \ne - 1.\)
a) Chứng minh \(B = \frac{4}{{x + 1}}.\)
b) Tính giá trị của biểu thức \[B\] tại \(x = - \frac{1}{2}.\)
c) Tìm các số nguyên \[x\] để giá trị của biểu thức \[B\] là số nguyên.
Cho biểu thức \(B = \frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{4}{{1 - {x^2}}}\) với \(x \ne 1\) và \(x \ne - 1.\)
a) Chứng minh \(B = \frac{4}{{x + 1}}.\)
b) Tính giá trị của biểu thức \[B\] tại \(x = - \frac{1}{2}.\)
c) Tìm các số nguyên \[x\] để giá trị của biểu thức \[B\] là số nguyên.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.