Trong giờ thực hành thí nghiệm, một học sinh thả một miếng chì có khối lượng \(0,31\) kg đang ở nhiệt độ \(100^\circ {\rm{C}}\) vào \(0,25\) kg nước đang ở nhiệt độ \(58,5^\circ {\rm{C}}.\) Biết nhiệt dung riêng của nước là \(4\,\,200\) J/kg.K, nhiệt dung riêng của chì là 130 J/kg.K. gọi \(t^\circ {\rm{C}}\) là nhiệt độ khi đạt trạng thái cân bằng nhiệt, \({Q_{nuoc}}\) (J) là nhiệt lượng nước thu vào để tăng nhiệt độ từ \(58,5^\circ {\rm{C}}\) lên \(t^\circ {\rm{C,}}\) \({Q_{chi}}\) (J) là nhiệt lượng chì tỏa ra để giảm nhiệt độ từ \(100^\circ {\rm{C}}\) xuống \(t^\circ {\rm{C}}{\rm{.}}\) Biết công thức tính nhiệt lượng thu vào/ tỏa ra là: \(Q = m \cdot c \cdot \Delta t\) (J), trong đó \(m\) là khối lượng của vật (kg), \(c\) là nhiệt dung riêng của chất làm nên vật (J/kg.K) và \(\Delta t = {t_2} - {t_1}\) là độ tăng/giảm nhiệt độ của vật \(\left( {^\circ {\rm{C}}} \right)\) với \({t_1}\) là nhiệt độ ban đầu, \({t_2}\) là nhiệt độ cuối cùng.
a) Viết công thức tính \({Q_{chi}}\) theo \(t.\) Công thức này có phải là hàm số bậc nhất không? Nếu có, hãy tìm các hệ số \(a,b\) của nó.
b) Khi có sự cân bằng nhiệt thì nhiệt độ của nước và chì là bao nhiêu (làm tròn kết quả đến hàng đơn vị)?
Trong giờ thực hành thí nghiệm, một học sinh thả một miếng chì có khối lượng \(0,31\) kg đang ở nhiệt độ \(100^\circ {\rm{C}}\) vào \(0,25\) kg nước đang ở nhiệt độ \(58,5^\circ {\rm{C}}.\) Biết nhiệt dung riêng của nước là \(4\,\,200\) J/kg.K, nhiệt dung riêng của chì là 130 J/kg.K. gọi \(t^\circ {\rm{C}}\) là nhiệt độ khi đạt trạng thái cân bằng nhiệt, \({Q_{nuoc}}\) (J) là nhiệt lượng nước thu vào để tăng nhiệt độ từ \(58,5^\circ {\rm{C}}\) lên \(t^\circ {\rm{C,}}\) \({Q_{chi}}\) (J) là nhiệt lượng chì tỏa ra để giảm nhiệt độ từ \(100^\circ {\rm{C}}\) xuống \(t^\circ {\rm{C}}{\rm{.}}\) Biết công thức tính nhiệt lượng thu vào/ tỏa ra là: \(Q = m \cdot c \cdot \Delta t\) (J), trong đó \(m\) là khối lượng của vật (kg), \(c\) là nhiệt dung riêng của chất làm nên vật (J/kg.K) và \(\Delta t = {t_2} - {t_1}\) là độ tăng/giảm nhiệt độ của vật \(\left( {^\circ {\rm{C}}} \right)\) với \({t_1}\) là nhiệt độ ban đầu, \({t_2}\) là nhiệt độ cuối cùng.
a) Viết công thức tính \({Q_{chi}}\) theo \(t.\) Công thức này có phải là hàm số bậc nhất không? Nếu có, hãy tìm các hệ số \(a,b\) của nó.
b) Khi có sự cân bằng nhiệt thì nhiệt độ của nước và chì là bao nhiêu (làm tròn kết quả đến hàng đơn vị)?
Quảng cáo
Trả lời:

Hướng dẫn giải
a) Nhiệt lượng chì tỏa ra để giảm nhiệt độ từ \(100^\circ {\rm{C}}\) xuống \(t^\circ {\rm{C}}\) là:
\({Q_{chi}} = 0,31 \cdot 130 \cdot \left( {100 - t} \right) = - 40,3t + 4\,\,030\) (J).
Công thức trên là hàm số bậc nhất với hệ số \(a = - 40,3\) và \(b = 4\,\,030.\)
b) Nhiệt lượng chì thu vào để tăng nhiệt độ từ \(58,5^\circ {\rm{C}}\) lên \(t^\circ {\rm{C}}\) là:
\({Q_{chi}} = 0,25 \cdot 4\,\,200 \cdot \left( {t - 58,5} \right) = 1\,\,050t - 61\,\,425\) (J).
Khi cân bằng nhiệt, nhiệt lượng tỏa ra bằng với nhiệt lượng thu vào nên ta có: \({Q_{nuoc}} = {Q_{chi}}\)
Do đó \(1\,\,050t - 61\,\,425 = - 40,3t + 4\,\,030\)
\(1\,\,090,3t = 65\,\,455\)
\(t \approx 60\)
Vậy nhiệt độ của nước và chì khi đạt trạng thái cân bằng nhiệt là khoảng \(60^\circ {\rm{C}}.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
b) \(\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right) + x\left( {3 - {x^2}} \right) = x\)
\(\left( {{x^3} - {2^3}} \right) + \left( {3x - {x^3}} \right) - x = 0\)
\(2x - 8 = 0\)
\(2x = 8\)
\(x = 4\).
Vậy \(x = 4\).Lời giải
j) \(1 + \frac{{{x^3} - x}}{{{x^2} + 1}} \cdot \left( {\frac{1}{{1 - x}} - \frac{1}{{1 - {x^2}}}} \right)\)
\( = 1 + \frac{{x\left( {{x^2} - 1} \right)}}{{{x^2} + 1}} \cdot \left[ {\frac{1}{{1 - x}} - \frac{1}{{\left( {1 - x} \right)\left( {1 + x} \right)}}} \right]\)
\( = 1 - \frac{{x\left( {1 - {x^2}} \right)}}{{{x^2} + 1}} \cdot \frac{{1 + x - 1}}{{\left( {1 - x} \right)\left( {1 + x} \right)}}\)
\( = 1 - \frac{{x\left( {1 - x} \right)\left( {1 + x} \right)}}{{{x^2} + 1}} \cdot \frac{x}{{\left( {1 - x} \right)\left( {1 + x} \right)}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Cho biểu thức \(B = \frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{4}{{1 - {x^2}}}\) với \(x \ne 1\) và \(x \ne - 1.\)
a) Chứng minh \(B = \frac{4}{{x + 1}}.\)
b) Tính giá trị của biểu thức \[B\] tại \(x = - \frac{1}{2}.\)
c) Tìm các số nguyên \[x\] để giá trị của biểu thức \[B\] là số nguyên.
Cho biểu thức \(B = \frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{4}{{1 - {x^2}}}\) với \(x \ne 1\) và \(x \ne - 1.\)
a) Chứng minh \(B = \frac{4}{{x + 1}}.\)
b) Tính giá trị của biểu thức \[B\] tại \(x = - \frac{1}{2}.\)
c) Tìm các số nguyên \[x\] để giá trị của biểu thức \[B\] là số nguyên.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.