Cho biểu thức \(B = \frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{4}{{1 - {x^2}}}\) với \(x \ne 1\) và \(x \ne - 1.\)
a) Chứng minh \(B = \frac{4}{{x + 1}}.\)
b) Tính giá trị của biểu thức \[B\] tại \(x = - \frac{1}{2}.\)
c) Tìm các số nguyên \[x\] để giá trị của biểu thức \[B\] là số nguyên.
Cho biểu thức \(B = \frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{4}{{1 - {x^2}}}\) với \(x \ne 1\) và \(x \ne - 1.\)
a) Chứng minh \(B = \frac{4}{{x + 1}}.\)
b) Tính giá trị của biểu thức \[B\] tại \(x = - \frac{1}{2}.\)
c) Tìm các số nguyên \[x\] để giá trị của biểu thức \[B\] là số nguyên.
Quảng cáo
Trả lời:

a) Với \(x \ne 1\) và \(x \ne - 1\) ta có:
\(B = \frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{4}{{1 - {x^2}}}\)\( = \frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} - \frac{4}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)
\( = \frac{{{{\left( {x + 1} \right)}^2} - {{\left( {x - 1} \right)}^2} - 4}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)\( = \frac{{\left( {{x^2} + 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right) - 4}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)
\( = \frac{{4x - 4}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)\( = \frac{{4\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)\( = \frac{4}{{x + 1}}\).
Vậy với \(x \ne 1\) và \(x \ne - 1\) thì \(B = \frac{4}{{x + 1}}.\)
b) Với \(x = - \frac{1}{2}\) thoả mãn điều kiện xác định, thay vào biểu thức \(B = \frac{4}{{x + 1}},\) ta được:
\(B = \frac{4}{{ - \frac{1}{2} + 1}} = \frac{4}{{\frac{1}{2}}} = 8.\)
Vậy với \(x = - \frac{1}{2}\) thì \(B = 8.\)
c) Với \(x \ne 1\) và \(x \ne - 1\) thì \(B = \frac{4}{{x + 1}}.\)
Với \(x\) là số nguyên, để \(B\) nhận giá trị nguyên thì \(x + 1\) là ước của \(4.\)
Mà Ư\(\left( 4 \right) = \left\{ {1;\,\, - 1;\,\,2;\,\, - 2;\,\,4;\,\, - 4} \right\}.\)
Ta có bảng sau:
\(x + 1\) |
\(1\) |
\( - 1\) |
\(2\) |
\( - 2\) |
\(4\) |
\( - 4\) |
\(x\) |
\(0\) |
\( - 2\) |
\(1\) |
\( - 3\) |
\(3\) |
\( - 5\) |
Đối chiếu \(x \in \mathbb{Z},\) |
Thỏa mãn |
Thỏa mãn |
Không thỏa mãn |
Thỏa mãn |
Thỏa mãn |
Thỏa mãn |
Do đó: \(x \in \left\{ { - 5;\,\, - 3;\,\, - 2;\,\,0;\,\,3} \right\}.\)
Vậy để \(B\) nhận giá trị nguyên thì \(x \in \left\{ { - 5;\,\, - 3;\,\, - 2;\,\,0;\,\,3} \right\}.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Nhiệt lượng chì tỏa ra để giảm nhiệt độ từ \(100^\circ {\rm{C}}\) xuống \(t^\circ {\rm{C}}\) là:
\({Q_{chi}} = 0,31 \cdot 130 \cdot \left( {100 - t} \right) = - 40,3t + 4\,\,030\) (J).
Công thức trên là hàm số bậc nhất với hệ số \(a = - 40,3\) và \(b = 4\,\,030.\)
b) Nhiệt lượng chì thu vào để tăng nhiệt độ từ \(58,5^\circ {\rm{C}}\) lên \(t^\circ {\rm{C}}\) là:
\({Q_{chi}} = 0,25 \cdot 4\,\,200 \cdot \left( {t - 58,5} \right) = 1\,\,050t - 61\,\,425\) (J).
Khi cân bằng nhiệt, nhiệt lượng tỏa ra bằng với nhiệt lượng thu vào nên ta có: \({Q_{nuoc}} = {Q_{chi}}\)
Do đó \(1\,\,050t - 61\,\,425 = - 40,3t + 4\,\,030\)
\(1\,\,090,3t = 65\,\,455\)
\(t \approx 60\)
Vậy nhiệt độ của nước và chì khi đạt trạng thái cân bằng nhiệt là khoảng \(60^\circ {\rm{C}}.\)
Lời giải
h) \(2{x^2} - 5x + 3 = 0\)
\(2{x^2} - 2x - 3x + 3 = 0\)
\(\left( {2{x^2} - 2x} \right) - \left( {3x - 3} \right) = 0\)
\(2x\left( {x - 1} \right) - 3\left( {x - 1} \right) = 0\)
\(\left( {x - 1} \right)\left( {2x - 3} \right) = 0\)
\(x - 1 = 0\) hoặc \(2x - 3 = 0\)
\(x = 1\) hoặc \(x = \frac{3}{2}\)
Vậy \(x = 1\); \(x = \frac{3}{2}\).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.